期刊文献+
共找到725篇文章
< 1 2 37 >
每页显示 20 50 100
Upcycling of phosphogypsum waste for efficient zinc-ion batteries 被引量:2
1
作者 Huanwen Wang Can Luo +9 位作者 Yinyin Qian Caihong Yang Xiaojun Shi Yansheng Gong Rui Wang Beibei He Jun Jin Aidong Tang Edison Huixiang Ang Huaming Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期157-166,I0006,共11页
Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but ... Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste. 展开更多
关键词 Upcycling Phosphogypsum waste Zinc-ion battery Solid-electrolyte-interface Protection layer
下载PDF
Recent progress and perspective on batteries made from nuclear waste 被引量:1
2
作者 Nirmal Kumar Katiyar Saurav Goel 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期1-8,共8页
Sustainable energy sources are an immediate need to cope with the imminent issue of climate change the world is facing today.In particular,the long-lasting miniatured power sources that can supply energy continually t... Sustainable energy sources are an immediate need to cope with the imminent issue of climate change the world is facing today.In particular,the long-lasting miniatured power sources that can supply energy continually to power handheld gadgets,sensors,electronic devices,unmanned airborne vehicles in space and extreme mining are some of the examples where this is an acute need.It is known from basic physics that radioactive materials decay over few years and some nuclear materials have their half-life until thousands of years.The past five decades of research have been spent harnessing the decay energy of the radioactive materials to develop batteries that can last until the radioactive reaction continues.Thus,an emergent opportunity of industrial symbiosis to make use of nuclear waste by using radioactive waste as raw material to develop bat-teries with long shelf life presents a great opportunity for sustainable energy resource development.However,the current canon of research on this topic is scarce.This perspective draws fresh discussions on the topic while highlighting future directions in this wealthy arena of research.Graphical abstract A long-lasting miniaturised nuclear battery utilising 14C radioactive isotope as fuel. 展开更多
关键词 Sustainable energy Nuclear waste battery NANO-DIAMOND
下载PDF
Separation of cadmium and nickel from waste Ni-Cd batteries 被引量:1
3
作者 ZHUJianxin YUBo 《Rare Metals》 SCIE EI CAS CSCD 2002年第3期234-237,共4页
To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure,... To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure, and time on the separation of Ni and Cd werestudied respectively. The mechanism of vacuum thermal recycling was also discussed. Results showthat vacuum distillation is a very effective separation method for waste Ni-Cd batteries. At aconstant pressure, the increase of temperature can improve the separating efficiency of Cd. When thetemperature is 1 173 K, cadmium can evaporate completely from the samples during 3 h at 10 Pa. Thereduction of pressure in a certain range is effective to the separating of Cd from Ni-Cd batteriesby vacuum distillation. 展开更多
关键词 waste Ni-Cd battery vacuum distillation resource separation
下载PDF
Recycling waste crystalline-silicon solar cells: Application as high performance Si-based anode materials for lithium-ion batteries
4
作者 WANG Qi MENG Bi-cheng +6 位作者 DU Yue-yong XU Xiang-qun ZHOU Zhe Boon K.Ng ZHANG Zong-liang JIANG Liang-xing LIU Fang-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2888-2898,共11页
Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the... Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed. 展开更多
关键词 waste solar panels RECYCLING Si-based anodes lithium-ion batteries
下载PDF
Research on thin grid materials of lead-acid batteries 被引量:2
5
作者 WANG Erdong SHI Pengfei GAO Jun 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期43-46,共4页
A detailed investigation on Pb-Ca-Sn alloys was made in order to choose suitable grid alloys materials for thin plate lead-acid batteries. The electrochemical performances of alloys were investigated by electrochemica... A detailed investigation on Pb-Ca-Sn alloys was made in order to choose suitable grid alloys materials for thin plate lead-acid batteries. The electrochemical performances of alloys were investigated by electrochemical corrosion experiment, scanning electron microscope (SEM), and cyclic voltammetry (CV) test. The results indicate that Pb-Ca-Sn-Bi-Cu alloys can be used to make the grids used for thin grid lead-acid batteries, the content of bismuth has primary effects on the corrosion resistance of grid alloys, the composition of alloys plays an important role on batteries performance, and appropriate scale of elements can be choosed to obtain optimal electrochemical performance. The lead-acid batteries using this kind of grid show good performance by cycle life test. 展开更多
关键词 lead-acid batteries GRID ALLOYS CORROSION
下载PDF
Experiments Study on Charge Technology of Lead-Acid Electric Vehicle Batteries 被引量:2
6
作者 李雯 张承宁 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期159-163,共5页
The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investiga... The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investigated with experiments done on the Digatron BNT 400-050 test bench. Battery current, terminal voltage, capacity, energy and terminal pole temperature during battery experiment were recorded, and corresponding curves were depicted. Battery capacity-time ratio, energy efficiency and energy-temperature ratio are put forward to be the appraising criteria of lead-acid battery on electric vehicle (EV). According to the appraising criteria and the battery curves, multistage-current/negative-pulse charge method is recommended to charge lead-acid EV battery. 展开更多
关键词 electric vehicle (EV) lead-acid battery CHARGE appraising criteria
下载PDF
Simple electrode assembly engineering:Toward a multifunctional lead-acid battery
7
作者 Xiaojuan Cao Xiaoyu Yan +4 位作者 Kai Zhao Le Ke Xiaoyi Jiang Lingjiao Li Ning Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期536-543,共8页
Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-ef... Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity. 展开更多
关键词 lead-acid battery Decoupled electrode reaction Energy storage Discharge capacity Fuel cell
下载PDF
From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries
8
作者 Madina Kalibek Lunara Rakhymbay +3 位作者 Zhanar Zhakiyeva Zhumabay Bakenov Seung-Taek Myung Aishuak Konarov 《Carbon Resources Conversion》 EI 2024年第3期66-73,共8页
In this study,we introduce a straightforward and effective approach to produce P-doped hard carbon using coffee grounds as the precursor,with H_(3)PO_(4)serving as the doping agent.By varying the concentrations of H_(... In this study,we introduce a straightforward and effective approach to produce P-doped hard carbon using coffee grounds as the precursor,with H_(3)PO_(4)serving as the doping agent.By varying the concentrations of H_(3)PO_(4)(1 M,2 M,and 3 M),we aimed to determine the optimal doping level for maximizing the incorporation of phosphorus ions into the carbon framework.Our investigation revealed that using 2 M of H_(3)PO_(4)as the dopant material for hard carbon led to promising electrochemical performance when employed as an anode material for sodium-ion batteries.The P-doped hard carbon,carbonized at 1300℃,exhibited an impressive reversible capacity of 341 mAh g1 at a current density of 20 mA g1,with an initial Coulombic efficiency(ICE)of 83%.This outstanding electrochemical performance of P-doped hard carbon can be attributed to its unique properties,including a porous agglomerated structure,a significant interlayer spacing,and the formation of C-P bonds. 展开更多
关键词 Coffee waste Hard carbon Phosphorus doping Sodium-ion batteries
原文传递
Self-Discharge in Valve-Regulated Sealed Lead-Acid Batteries
9
作者 董保光 张秋道 陈振宁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第4期21-25,共5页
Factors that cause the self-discharge in valve-regulated sealed lead-acid batteries are discussed and measures to inhibit the self-discharge are put forward.
关键词 ss: SELF-DISCHARGE VALVE-REGULATED lead-acid BATTERY
下载PDF
Study of the Charge Acceptance of Small-Size Sealed Lead-Acid Batteries
10
作者 董保光 张秋道 穆俊江 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1994年第1期59-62,共4页
StudyoftheChargeAcceptanceofSmall-SizeSealedLead-AcidBatteriesDONGBaoguang;ZHANGQiudao;MUJunjiang(董保光,张秋道,穆俊... StudyoftheChargeAcceptanceofSmall-SizeSealedLead-AcidBatteriesDONGBaoguang;ZHANGQiudao;MUJunjiang(董保光,张秋道,穆俊江)(Dept.ofApplied... 展开更多
关键词 ss: lead-acid BATTERY CHARGE ACCEPTANCE ADDITIVES
下载PDF
Potentiometric Measurement of State-of-Charge of Lead-Acid Batteries Using Polymeric Ferrocene and Quinones Derivatives
11
作者 Touma B. Issa Pritam Singh +1 位作者 Murray V. Baker Todd Lee 《Journal of Analytical Sciences, Methods and Instrumentation》 2014年第4期110-118,共9页
Measurement of state-of-charge of lead-acid batteries using potentiometric sensors would be convenient;however, most of the electrochemical couples are either soluble or are unstable in the battery electrolyte. This p... Measurement of state-of-charge of lead-acid batteries using potentiometric sensors would be convenient;however, most of the electrochemical couples are either soluble or are unstable in the battery electrolyte. This paper describes the results of an investigation of poly (divinylferrocene) (PDVF) and Poly(diethynylanthraquinone) (PAQ) couples in sulfuric acid with the view to developing a potentiometric sensor for lead-acid batteries. These compounds were both found to be quite stable and undergo reversible reduction/oxidation in sulfuric acid media. Their redox potential difference varied linearly with sulfuric acid concentration in the range of 1 M - 5 M (i.e. simulated lead-acid electrolyte during battery charge/discharge cycles). A sensor based on these compounds has been investigated. 展开更多
关键词 Surface Modified Electrodes FERROCENE QUINONE STATE-OF-CHARGE lead-acid Battery
下载PDF
Recovery of cadmium by high-temperature vaccum evaporation from Ni-Cd batteries 被引量:4
12
作者 朱建新 李金惠 +1 位作者 聂永丰 于波 《中国有色金属学会会刊:英文版》 CSCD 2003年第2期254-257,共4页
High temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni Cd ... High temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni Cd batteries was conducted using self designed experimental apparatus. An effective recycling technology based on the evaporation phenomenon of batteries and the elements of cadmium under the laboratory condition was studied. The results show that: (1)Ni/Cd can be effectively recovered by vacuum distillation at appropriate temperature, pressure and time, and high purity cadmium (>99%) can be obtained through the process; (2)the effective distillatory temperature should be at the range of 5731 173 K; (3)the higher the evaporation temperature, the lower the purity of cadmium in condensate 展开更多
关键词 真空蒸发 镍镉电池 废电池 镉回收
下载PDF
Reductive atmospheric acid leaching of spent alkaline batteries in H_2SO_4/Na_2SO_3 solutions
13
作者 Mehmet Hakan Morcali 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期674-681,共8页
This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and l... This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ'mo1-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely con- verted into zincate (Zn(OH)42-) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/rain, pH 〉 13). After the manganese was removed from the solution, the Zn(OH)4^2- was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries. 展开更多
关键词 waste recycling alkaline batteries MANGANESE ZINC recovery
下载PDF
Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery
14
作者 Nilesh RChodankar Su‑Hyeon Ji +1 位作者 Young‑Kyu Han Do‑Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期1-12,共12页
Rechargeable alkaline batteries(RABs)have received remarkable attention in the past decade for their high energy,low cost,safe operation,facile manufacture,and ecofriendly nature.To date,expensive electrode materials ... Rechargeable alkaline batteries(RABs)have received remarkable attention in the past decade for their high energy,low cost,safe operation,facile manufacture,and ecofriendly nature.To date,expensive electrode materials and current collectors were predominantly applied for RABs,which have limited their real-world efficacy.In the present work,we propose a scalable process to utilize electronic waste(e-waste)Cu wires as a cost-effective current collector for high-energy wire-type RABs.Initially,the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion.Then,both atomiclayer-deposited NiO and NiCo-hydroxide were applied to the CuO nanowires to form a uniform dendritic-structured NiCo-hydroxide/NiO/CuO/Cu electrode.When the prepared dendritic-structured electrode was applied to the RAB,it showed excellent electrochemical features,namely high-energy-density(82.42 Wh kg−1),excellent specific capacity(219 mAh g−1),and long-term cycling stability(94%capacity retention over 5000 cycles).The presented approach and material meet the requirements of a cost-effective,abundant,and highly efficient electrode for advanced eco-friendly RABs.More importantly,the present method provides an efficient path to recycle e-waste for value-added energy storage applications. 展开更多
关键词 Alkaline batteries Dendritic nanostructure NiCo-hydroxide waste Cu wires
下载PDF
Leather waste as precursor to prepare bifunctional catalyst for alkaline and neutral zinc-air batteries 被引量:1
15
作者 Zeyu Zhu Jing Zhu +7 位作者 Yangshen Chen Xinxin Liu Mengchun Zhang Mengxiao Yang Mengyu Liu Jiansheng Wu Sheng Li Fengwei Huo 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期594-597,共4页
Carbon materials derived from biomass waste are considered as potential electrocatalysts for applications in zinc-air batteries(ZABs)due to their low cost and good catalytic activity.Here,we reported the preparation o... Carbon materials derived from biomass waste are considered as potential electrocatalysts for applications in zinc-air batteries(ZABs)due to their low cost and good catalytic activity.Here,we reported the preparation of gel-based catalysts through utilizing hydrolyzed waste leather powder cross-linked with metallic salt solutions.After calcination,iron-nickel alloy anchored in nitrogen-doped porous carbon catalysts(Fe Ni@NDC)was achieved.Compared with commercial Pt/C catalyst,Fe Ni@NDC-800 exhibited lower E_(1/2)(0.77 V)and better durability.More importantly,the resulting Fe Ni@NDC-800-based alkaline ZABs achieved power density of 93.01 m W/cm^(2) and open circuit voltage of 1.45 V,which the Fe Ni@NDC-800-based neutral ZAB displayed a charge/discharge cycle stability of 275 h.This work opens up the possibility of rational design and preparation of low-cost and high-performance electrocatalysts from recyclable leather waste. 展开更多
关键词 Leather waste Zinc-air batteries Bifunctional electrocatalyst FeNi alloy Biomass
原文传递
Characterization of Spent Household Zinc-Carbon Dry Cell Batteries in the Process of Recovery of Value Metals
16
作者 Majharul Haque Khan A.S.W Kurny 《Journal of Minerals and Materials Characterization and Engineering》 2012年第6期641-651,共11页
Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both n... Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both new and spent batteries of all the five types (AAA, AA, C, D and 9V) were examined. The outer steel casings were found to be tin plated. Steel, zinc and manganese constituted 63 percent of the total weight of the battery. Average zinc and manganese contents were about 22 and 24 percent of the total weight of spent batteries. The electrolyte paste of the spent batteries contained 22 wt. percent zinc and 60 wt. percent manganese. The rest was chlorine, carbon and small amounts of iron and other impurity elements. The major phases in the fresh batteries were carbon, MnO2 and NH4Cl, while Zn(NH3)2Cl2, ZnO.Mn2O3, Mn3O2 and Mn2O4 were the prominent phases in the spent batteries. Presence of mercury and cadmium were not detected and a small percentage of lead was found in both the zinc anode and in the electrolyte paste. 展开更多
关键词 Zinc-carbon battery CHARACTERIZATION SPENT batteries waste management
下载PDF
Simple Rational Model for Discharge of Batteries with Aqueous Electrolytes, Based on Nernst Equation
17
作者 Panagis G. Papadopoulos Christopher G. Koutitas +2 位作者 Christos G. Karayannis Panos D. Kiousis Yannis N. Dimitropoulos 《Open Journal of Physical Chemistry》 2021年第1期1-11,共11页
A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the batter... A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the battery are considered. A simple algorithm, with variable time step-length <span style="font-family:Verdana;">Δ</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">, is presented, for proposed model. The model is first applied to Daniel cell, in order to clar</span><span style="font-family:Verdana;">ify</span><span style="font-family:""><span style="font-family:Verdana;"> concepts and principles of battery operation. It is found that initial pinching, in time-history curve of voltage </span><i><span style="font-family:Verdana;">E-t</span></i><span style="font-family:Verdana;">, is due to initial under-concentration of product ion. Then, model is applied </span></span><span style="font-family:Verdana;">to</span><span> a lead-acid battery. In absence of an ion product, and in order to construct nominator of Nernst ratio, such an ion, with coefficient tending to zero, is assumed, thus yielding unity in nominator. Time-history curves of voltage, for various values of internal resistance, are compared with corresponding published experimental curves. Temperature effect on voltage-time curve is examined. Proposed model can be extended to other types of batteries, which can be considered as having aqueous electrolytes, too.</span> 展开更多
关键词 BATTERY Aqueous Electrolyte DISCHARGE Nernst Equation Daniel Cell lead-acid Battery Temperature Effect
下载PDF
Discarded Carbon-Zinc Batteries as Source of an Efficient Heterogeneous Fenton-Like Catalyst Employed to Degrade Organic Molecules in an Aqueous Medium
18
作者 A. Valadares S. F. Resende +1 位作者 I. M. F. de Oliveira R. Augusti 《Green and Sustainable Chemistry》 2019年第3期94-103,共10页
The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evide... The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evident environmental application, this work also presents an economic alternative for the production of new catalysts used to remediate polluted waters. For this, discarded carbon-zinc batteries were gathered, disassembled and their anodic paste collected. After acidic treatment and calcination at 500°C, characterization measurements, i.e. flame atomic absorption spectroscopy (FAAS), nitrogen sorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed that the so-obtained material consisted mainly of ZnMn2O4. This material acts as a heterogeneous catalyst in a Fenton-like process that degrades the dye Indigo Carmine in water. That is probably due to the presence of Mn(III) (manganese in the +3 oxidation state) in this material that triggers the decomposition of hydrogen peroxide (H2O2) to yield hydroxyl radicals (HO&middot;). Moreover, direct infusion electrospray ionization coupled to high resolution mass spectrometry (ESI-HRMS) was employed to characterize the main by-products resulting from such degradation process. These initial results thus indicate that raw materials from waste batteries can therefore be potentially employed as efficient Fenton-like catalysts to degrade organic pollutants in an aqueous solution. 展开更多
关键词 Electronic waste Zinc-Carbon batteries ZnMn2O4 FENTON-LIKE Degradation Indigo CARMINE Direct Infusion ELECTROSPRAY Ionization High Resolution Mass Spectrometry By-Products Identification
下载PDF
Fabrication of Silicon/Carbon Composite Material with Silicon Waste and Carbon Nanofiber Applied in Lithium-Ion Battery
19
作者 Ying-Yang Li Che-Ya Wu +1 位作者 Tzu-Ying Lin Jenq-Gong Duh 《Journal of Environmental Protection》 2022年第1期150-160,共11页
Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change... Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change during the lithiation and the delithiation process. In this work, a silicon/carbon composite constituted to Si powder and carbon nanofiber (CNF) is produced to solve the above issues as a new design structure of anode material. The Si powder was recycled from the silicon slicing waste in photovoltaic industry and the CNF was from dry rice straws. By mixing the purified Si powder with CNF, the composite was synthesized by the freeze-drying method and calcination. In the cyclic test, Si adding with 1 wt% CNF showed 3091 mAh/g capacity in the first cycle and 1079 mAh/g capacity after 100 cycles at the current density of 0.5 A/g, which were both better than pristine Si. SEM images also show the composite structure can eliminate cracks on the surface of the electrode during cycling. CNF attaching on Si particles can increase specific surface area, so binder can easily combine the active materials and the conductive materials together. This strategy enhances the structure stability and prevents the electrode from delamination. 展开更多
关键词 Composite Material Carbon Nanofiber waste Silicon Anode Material Lithium-Ion Battery
下载PDF
Pb-Ca-Sn-Ba Grid Alloys for Valve-Regulated Lead Acid Batteries
20
作者 Marina M. Burashnikova Irina V. Zotova Ivan A. Kazarinov 《Engineering(科研)》 2013年第10期9-15,共7页
The effect of barium additives on the process of anodic corrosion of lead-tin-calcium alloys in a 4.8 М sulfuric acid solution was studied. Cyclic voltammetry, impedance spectroscopy, weight loss measurements and sca... The effect of barium additives on the process of anodic corrosion of lead-tin-calcium alloys in a 4.8 М sulfuric acid solution was studied. Cyclic voltammetry, impedance spectroscopy, weight loss measurements and scanning electronic microscope analysis have allowed exploring the oxidation process and characterizing the formed corrosion layer. According to our results, barium introduction into lead-tin-calcium alloys increases their hardness, reduces their electrochemical activity, and improves their corrosion stability. Reduction of the calcium content in the alloy can be compensated by adding barium. Barium dopation at lead-tin-calcium alloys decreases the resistance of the oxide layer formed on the grid surface, in a deeply discharged state, and raises its resistance during floating conditions and at a charged state of the positive electrode. 展开更多
关键词 lead-acid BATTERY LEAD Alloys BARIUM Corrosion Layer
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部