The current study summarizes the current status of wastewater stabilization ponds(WSPs)treatment plants that have already been built in 11 governorates throughout Egypt.Moreover,this study aims to determine the most a...The current study summarizes the current status of wastewater stabilization ponds(WSPs)treatment plants that have already been built in 11 governorates throughout Egypt.Moreover,this study aims to determine the most appropriate chlorine dose for waste stabilization ponds(WSPs)effluents to ensure the treated effluents are suitable for reuse in unrestricted irrigation and to comply with the current legislation on direct discharge onto water bodies.According to the findings,the chlorine doses used as a disinfectant in the treated effluents of the majority of WSP treatment plants ranged from 3 to 13 mg/L.Meanwhile,two of the WSPs treatment plants effluents,the Qus WSPs treatment plant in Qena governorate and the Al Zarabii WSPs treatment plant in Asyut governorate used high chlorine doses reached to 17 and 19 mg/L,respectively.This is due to the fact that both the Qus and Al Zarabii WSPs treatment plants have a high organic load,which necessitated the use of more chlorine to achieve the optimum chlorine dose at 13 mg/L for Qus and 11mg/L for Al Zarabii.The findings demonstrated that chlorine has a powerful effect in completely removing bacteria.Furthermore,in most chlorine-treated wastewater final effluents,as the chlorine doses increased,the chlorophyll-a reading decreased.The amount of trihalomethanes(THMs)produced as disinfectant byproduct was measured.The results proved that the water can be used in unrestricted irrigation,and after adding chlorine,it can be dumped on water bodies without health risks.展开更多
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra...Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.展开更多
The mining industry has contributed tremendously to the global economy.However,waste generated by this activity poses many challenges.Current low-cost technologies for the removal of heavy metals from mining wastewate...The mining industry has contributed tremendously to the global economy.However,waste generated by this activity poses many challenges.Current low-cost technologies for the removal of heavy metals from mining wastewater include biosorption,adsorption,CWs(Constructed Wetlands)and waste stabilization ponds.This chapter focuses on sustainable mining wastewater treatment technologies with emphasis on gold mining wastewater.It discusses the technical and environmental challenges associated with mining effluent treatment,process conditions for optimum plant performance,efficiency,limitations and the economics of treating mining wastewater.The overall treatment cost of metal contaminated wastewater depends on the process employed and the local conditions.In general,technical applicability,cost-effectiveness and plant simplicity are the key factors in selecting the most suitable treatment method.Proper management of the spent biosorbent and solid wastes generated is also discussed.展开更多
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili...Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.展开更多
The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc...The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.展开更多
This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaC...This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.展开更多
After the chemical and biological analyses of grey water from Butare Central Prison in Butare city, District of Huye, southern province of Rwanda, the resulting data were used in preliminary calculations of a natural ...After the chemical and biological analyses of grey water from Butare Central Prison in Butare city, District of Huye, southern province of Rwanda, the resulting data were used in preliminary calculations of a natural system based treatment facility. In our region, natural systems, lagoons and constructed wetlands were identified as potential effective technologies for wastewater treatment due to the low cost and favorable climate. In our study, the authors calculated two systems of treatment plants, one based on two ponds associated with a constructed wetland and another based on three ponds. This study aims at raising awareness of the required land surface that can allow the use of extensive technologies in treating domestic wastewater from the prison. Depending on the system and on the design equation used, those systems differ from their dimensions. Those systems led to overall surface areas between 0.6 ha and 1 ha. In the next stage that will take an interest in studying the feasibility of the project, the decision will be made in favor of one of the calculated systems in compliance with the accuracy and site specifications that are still to be studied.展开更多
The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by bind...The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.展开更多
The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ...The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.展开更多
The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(4...The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7).展开更多
基金“The Academy of Scientific Research and Technology(ASRT)”Egypt,for funding and supporting this work through the project entitled“Evaluation and upgrading of the stabilization ponds in Egypt for wastewater reuse,combined with production of value-added bioactive compounds from algae”project ID No.:4504.
文摘The current study summarizes the current status of wastewater stabilization ponds(WSPs)treatment plants that have already been built in 11 governorates throughout Egypt.Moreover,this study aims to determine the most appropriate chlorine dose for waste stabilization ponds(WSPs)effluents to ensure the treated effluents are suitable for reuse in unrestricted irrigation and to comply with the current legislation on direct discharge onto water bodies.According to the findings,the chlorine doses used as a disinfectant in the treated effluents of the majority of WSP treatment plants ranged from 3 to 13 mg/L.Meanwhile,two of the WSPs treatment plants effluents,the Qus WSPs treatment plant in Qena governorate and the Al Zarabii WSPs treatment plant in Asyut governorate used high chlorine doses reached to 17 and 19 mg/L,respectively.This is due to the fact that both the Qus and Al Zarabii WSPs treatment plants have a high organic load,which necessitated the use of more chlorine to achieve the optimum chlorine dose at 13 mg/L for Qus and 11mg/L for Al Zarabii.The findings demonstrated that chlorine has a powerful effect in completely removing bacteria.Furthermore,in most chlorine-treated wastewater final effluents,as the chlorine doses increased,the chlorophyll-a reading decreased.The amount of trihalomethanes(THMs)produced as disinfectant byproduct was measured.The results proved that the water can be used in unrestricted irrigation,and after adding chlorine,it can be dumped on water bodies without health risks.
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3901402)the Fundamental Research Funds for the Central Universities (Project No. 2022CDJKYJH037)。
文摘Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.
文摘The mining industry has contributed tremendously to the global economy.However,waste generated by this activity poses many challenges.Current low-cost technologies for the removal of heavy metals from mining wastewater include biosorption,adsorption,CWs(Constructed Wetlands)and waste stabilization ponds.This chapter focuses on sustainable mining wastewater treatment technologies with emphasis on gold mining wastewater.It discusses the technical and environmental challenges associated with mining effluent treatment,process conditions for optimum plant performance,efficiency,limitations and the economics of treating mining wastewater.The overall treatment cost of metal contaminated wastewater depends on the process employed and the local conditions.In general,technical applicability,cost-effectiveness and plant simplicity are the key factors in selecting the most suitable treatment method.Proper management of the spent biosorbent and solid wastes generated is also discussed.
文摘Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.
基金Projects(51209118,71373245)supported by the National Natural Science Foundation of ChinaProject(2014JBKY01)supported by the Fundamental Research Funds for CASST,China
文摘The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.
文摘This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.
文摘After the chemical and biological analyses of grey water from Butare Central Prison in Butare city, District of Huye, southern province of Rwanda, the resulting data were used in preliminary calculations of a natural system based treatment facility. In our region, natural systems, lagoons and constructed wetlands were identified as potential effective technologies for wastewater treatment due to the low cost and favorable climate. In our study, the authors calculated two systems of treatment plants, one based on two ponds associated with a constructed wetland and another based on three ponds. This study aims at raising awareness of the required land surface that can allow the use of extensive technologies in treating domestic wastewater from the prison. Depending on the system and on the design equation used, those systems differ from their dimensions. Those systems led to overall surface areas between 0.6 ha and 1 ha. In the next stage that will take an interest in studying the feasibility of the project, the decision will be made in favor of one of the calculated systems in compliance with the accuracy and site specifications that are still to be studied.
文摘The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.
基金Supported by the Project of Shangai State-owned Assets Supervision and Administration Commission(2013019)Project of Shanghai Science and Technology Commission(13231201901)+1 种基金Innovation Foundation of Shanghai Science and Technology Commission(11231200200)Special Project for Zhangjiang High-tech Park in Shanghai(201505-HP-C104-005)
文摘The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.
基金Project supported by the National Natural Science Foundation of China(41302028,41302029,21507105)Thousand Youth Talents Plan(Y42H831301)+3 种基金Key Project of Sichuan Education Department(14ZA0099,15ZB0116)Foundation of Laboratory of National Defense Key Discipline for Nuclear Waste and Environmental Safety,Southwest University of Science and Technology(15yyhk10)the Doctor Foundation in Southwest University of Science and Technology(10zx7126)Hebei Science and Technology Support Program(15211121)
文摘The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7).