Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ...Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.展开更多
In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of...In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of factors,including the geometrical characteristics of the rock and mining-induced stresses.In this study,a sensitivity analysis was conducted with the numerical,squat pillar,and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data.The results show a full factorial analysis is more reliable since stope stability is a complex process.Furthermore,the numerical results indicate that overburden stress has the most impact on stope stability,followed by stope height.However,the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact,followed by overburden stress and span.It appears that these methods overestimate the impact of stope height.Therefore,it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars.Nonetheless,Mathews method cannot accurately predict how the sill pillar impacts the stope stability.In addition,numerical analysis shows that all geometric parameters affect the roof safety factor,whereas the sill pillar has no significant influence on the safety factor of the hanging wall,which is primarily determined by the stope height–span ratio.展开更多
基金funded by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC)the authors would like to acknowledge the Niobec mine (Saint-Honoré, QuébecQuébec)
文摘Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.
文摘In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of factors,including the geometrical characteristics of the rock and mining-induced stresses.In this study,a sensitivity analysis was conducted with the numerical,squat pillar,and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data.The results show a full factorial analysis is more reliable since stope stability is a complex process.Furthermore,the numerical results indicate that overburden stress has the most impact on stope stability,followed by stope height.However,the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact,followed by overburden stress and span.It appears that these methods overestimate the impact of stope height.Therefore,it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars.Nonetheless,Mathews method cannot accurately predict how the sill pillar impacts the stope stability.In addition,numerical analysis shows that all geometric parameters affect the roof safety factor,whereas the sill pillar has no significant influence on the safety factor of the hanging wall,which is primarily determined by the stope height–span ratio.