This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi...This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.展开更多
It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic r...It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH ? 2–12, which can imply its universal utilization. The prepared BiFeO_3/Carbon nanocomposites have also displayed excellent capacities(over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO_3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO_3/Carbon can be a suitable material used in treating industrial dye wastewater potentially.展开更多
The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater.The composite was prepared by mixing phosphogypsum(PG),obtained...The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater.The composite was prepared by mixing phosphogypsum(PG),obtained from an industrial waste,and a natural clay mineral.The materials were characterized before and after use in adsorption by several techniques.Batch adsorption experiments were carried out,and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated.The optimum pH for the adsorption was found to be 4.The adsorption of these metal ions reached equilibrium after 2 h of contact.The pseudo-first-and the pseudo-second-order kinetic models,as well as the Freundlich and the Langmuir isotherm equations,were considered to describe the adsorption results.The maximum adsorbed amount of 85 mg·g^-1 Ag(I)and 108.3 mg·g?1 Au(III)was found.The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed.Strong acids appeared to be the best desorption agents to recover gold and silver ions.The use of aqua regia gave regeneration rates close to 95.3%and 94.3%for Ag(I)and Au(III),respectively.Finally,the removal of gold and silver ions from an industrial wastewater was tested in batch experiments,and percentage recoveries of 76.5%and 79.9%for Ag(I)and Au(III),respectively,were obtained.To carry out the industrial application of the proposed methodology,an economic viability study is required.展开更多
The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine a...The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine animals. It is a carbohydrate polymer consisting of β-1,4-linked anhydro-D-glucose units with three hydroxyl groups per anhydroglucose unit(AGU). Cellulose-based materials have been used in food, industrial, pharmaceutical, paper, textile production, and in wastewater treatment applications due to their low cost, renewability,biodegradability, and non-toxicity. For water treatment in the oil and gas industry, cellulose-based materials can be used as adsorbents, flocculants, and oil/water separation membranes. In this review, the uses of cellulose-based materials for wastewater treatment in the oil & gas industry are summarized, and recent research progress in the following aspects are highlighted: crude oil spill cleaning, flocculation of solid suspended matter in drilling or oil recovery in the upstream oil industry, adsorption of heavy metal or chemicals, and separation of oil/water by cellulosic membrane in the downstream water treatment.展开更多
Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of th...Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.展开更多
Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high ...Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens.展开更多
Duckweed is a group of aquatic plants with the potential of wastewater remediation and fast accumulation of biomass. The accumulated biomass, rich in cellulose, starch and protein, can be used for biofuel, bio-fertili...Duckweed is a group of aquatic plants with the potential of wastewater remediation and fast accumulation of biomass. The accumulated biomass, rich in cellulose, starch and protein, can be used for biofuel, bio-fertilizer, animal feed and human food. Characterization of natural biodiversity of duckweed species is essential for the germplasm preservation and various practical applications. We have collected samples of duckweed in eastern China and characterized species biodiversity by genotyping, using chloroplast (atpF-atpH and psbK-psbI spacers). Spirodela polyrhiza was revealed as a clear dominant duckweed species in all locations of the area. Other duckweed species were identified as Landoltia punctata, Lemna aequinoctialis and Lemna turionifera. Selected isolates of these four species were used in the experiments to estimate their potential in removing nitrogen and phosphorus nutrients from municipal and industrial wastewater sampled at the local sewage plants. Duckweed was able to reduce the concentration of nitrogen up to 98% and phosphorus up to 96%. The presented data demonstrates high efficiency of the local duckweed isolates for bioremediation of different types of wastewater and the great potential of duckweed for wastewater treatment when incorporated into the purification chain.展开更多
The local wastewater treatment facility in Yanbu Industrial City receives 24,000 m3/day of industrial wastewater. This wastewater, mostly from refineries and petrochemical industries, goes through physical, biological...The local wastewater treatment facility in Yanbu Industrial City receives 24,000 m3/day of industrial wastewater. This wastewater, mostly from refineries and petrochemical industries, goes through physical, biological and chemical stages of treatment. However, the treated water still fails to pass some of the permissible levels set by governmental agencies. This research paper investigated the enhancement of the treatment processes to reduce the turbidity of the effluent treated water. Ferric chloride, ferrous sulfate, alum and commercial synthetic cationic polymer were tried as coagulants. Different conditions (i.e., pH, temperature, dose, stirring rate) were searched. Ferrous sulfate and polymer reduced the final turbidity to acceptable values with very low doses compared with other coagulant.展开更多
Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter ...Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter of the pipe, which results in increased wellhead pressure and lower injectivity. A detailed microbiological composition of biofilms and abiotic fingerprints use of mineral scale from an injection well has not been reported before. Therefore, biofilm and mineral scale samples from three depth intervals within a deep injection well (surface zone, D1= 0 - 61 m;intermediate zone, D2 = 62 - 457 m;and above the injection zone, D3 = 458 - 884 m) with recurrent biofilm development were collected to characterize the mineral composition and microbial community DNA. X-ray diffraction (XRD) analysis of the solids confirms the composition of the solids collected was mostly calcium carbonate (CaCO3) with minor contributions from common mineral salts. Microbiological fingerprinting suggests that methanogenic archaea and sulfate-reducing bacteria both of which are anaerobic biofilm producers were the most prevalent members of the prokaryotic community at all sampled depths. Methanosarcinae spp. increased with increasing depths, unlike other archaea. A non-pathogenic biofilm-producing Entamoeba dispar was the most prevalent member of the microbial domain (>30%) in all samples but was highest at the middle depth. The Chao alpha diversity indices for bacteria, viruses, and protozoans were highest at the shallow depth and gradually declined with increasing depth. The prevalent species above the injection zone depth are not barophilic organisms that thrive at high pressures, rather they are sulfate-reducing bacteria involved in anaerobic dissimilatory sulfate metabolism.展开更多
The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations an...The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.展开更多
The aim of this work was to investigate the aerobic degradation of high-strength industrial (refinery) wastewaters in the inverse fluidized bed biological reactor, in which polypropylene particles of density 910 kg/m3...The aim of this work was to investigate the aerobic degradation of high-strength industrial (refinery) wastewaters in the inverse fluidized bed biological reactor, in which polypropylene particles of density 910 kg/m3 were fluidized by an upward flow of gas through a bed. Measurements of chemical oxygen demand (COD) versus residence time t were performed for various ratios of settled bed volume to reactor volume (Vb/VR) and air velocities u. The largest COD reduction, namely, from 54,840 to 2,190 mg/l, i.e. a 96% COD decrease, was achieved when the reactor was operated at the ratio (Vb/VR) = 0.55, air velocity u = 0.046 m/s and t = 65 h. Thus, these values of (Vb/VR), u and t can be considered as the optimal operating parameters for a reactor when used in treatment of high-strength refinery wastewaters. In the treatment operation conducted in a reactor optimally controlled at (Vb/VR) = 0.55, u = 0.046 m/s and t = 65 h, the conversions obtained for all phenolic constituents of the wastewater were larger than 95%. The conversions of about 90% were attained for other hydrocarbons.展开更多
The studied area (Shoubra El Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the su...The studied area (Shoubra El Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area. Shebin El Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies. Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al Ahleya Plastic Company discharges the highest amounts of total Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.展开更多
The essay covers the discharge and percentage of treatment of industrial wastewater in China before 1992,the analysis of industrial wastewater pollution to the environment and the problems and corrective measures to p...The essay covers the discharge and percentage of treatment of industrial wastewater in China before 1992,the analysis of industrial wastewater pollution to the environment and the problems and corrective measures to prevent and control the pollution caused by industrial wastewater in China.Water pollution is one of main environrnental problems in China. And industrial wastewater is a very important source to make water pollution. It is a key task to prevent industrial wastewater pollution and protect water quality of rivers, lakes (reservoirs), underground water in Chinese water environmental management.展开更多
This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater gen...This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater generated from food companies,livestock,and industries were summarized and reported.Measurement parameters affecting the performance of ABRs are briefly discussed.The state-of-the-art laboratory studies are compiled and critically reviewed.Critical challenges and suggestions for future investigation are also addressed.展开更多
Wastewater samples were collected from pulp and paper mill located in Kashipur (India) and were extracted using dichloromethane (DCM), chloroform and hexane solvents (all were HPLC-grade). The extracts were assayed fo...Wastewater samples were collected from pulp and paper mill located in Kashipur (India) and were extracted using dichloromethane (DCM), chloroform and hexane solvents (all were HPLC-grade). The extracts were assayed for their mutagenic potential using Ames Salmonella mutagenicity assay. TA98 strain was found to be the most responsive, in terms of induction factor (Mi) and slope (m) of the initial linear dose-response curve as determined by linear regression analysis up to the increasing doses indicating the presence of frame shift mutagens in the test samples. Mutagenicity of different extracts is arranged as follows: dichloromethane extracted water samples > hexane extracted water samples > chloroform extracted water samples. Hexane extract exhibited maximum mutagenic index of 13.0 and induction factor (Mi) 2.48 with TA98. The order of responsiveness based on the mutagenic index and induction factor for the test samples was in the following order: TA98 > TA97a > TA100 > TA102 > TA104. Our findings suggest that TA97a, TA98, TA100, TA102, TA104 were sensitive towards the wastewater extracts and showed considerable mutagenicity.展开更多
Being familiar with characteristics of industrial town effluents from various wastewater treatment units, which have high qualitative and quantitative variations and more uncertainties compared to urban wastewaters, p...Being familiar with characteristics of industrial town effluents from various wastewater treatment units, which have high qualitative and quantitative variations and more uncertainties compared to urban wastewaters, plays very effective role in governing them. With regard to environmental issues, proper operation of wastewater treatment plants is of par- ticular importance that in the case of inappropriate utilization, they will cause serious problems. Processes that exist in environmental systems mostly have two major characteristics: they are dependent on many variables;and there are complex relationships between its components which make them very difficult to analyze. In order to achieve a better and efficient control over the operation of an industrial wastewater treatment plant (WWTP), powerful mathematical tool can be used that is based on recorded data from some basic parameters of wastewater during a period of treatment plant operation. In this study, the treatment plant was divided into two main subsystems including: Low TDS (Total Dissolved Solids) treatment unit and Biological unit (extended aeration). The multilayer perceptron feed forward neural network with a hidden layer and stop training method was used to predict quality parameters of the industrial effluent. Data of this study are related to the Fajr Industrial Wastewater Treatment Plant, located in Mahshahr—Iran that qualita- tive and quantitative characteristics of its units were used for training, calibration and validation of the neural model. Also, Principal Component Analysis (PCA) technique was applied to improve performance of generated models of neural networks. The results of L-TDS unit showed good accuracy of the models in estimating qualitative profile of wastewater but results of biological unit did not have sufficient accuracy to being used. This model facilitates evaluating the performance of each treatment plant units through comparing the results of prediction model with the standard amount of outputs.展开更多
The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which ...The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which can provide theoretical references for the choice of wastewater treatment process.展开更多
Phenol, as a pure substance, is used in many fields due to its disinfectant, germicidal, local anaesthetic and peptizing properties. Aqueous solutions of phenol are produced as a waste of these industries and are disc...Phenol, as a pure substance, is used in many fields due to its disinfectant, germicidal, local anaesthetic and peptizing properties. Aqueous solutions of phenol are produced as a waste of these industries and are discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water due to industrial discharge or use of phenolic products. The aim of this study was to evaluate the phenol removal capability of enzymes from low-phenol-content (up to 5%) industrial wastewaters and to optimize the reaction conditions. For this purpose, two different enzymes namely, Laccase and Peroxidase were investigated with respect to their phenol removal capacities. The enzymatic reaction conditions were optimized using Response Surface Methodology (RSM). As a result 78% phenol removal was achieved with laccase using a model wastewater. In the studies where the enzyme was immobilized, a 50% removal was achieved indicating that further optimization was needed in this area.展开更多
Whereas the pulp and paper industrial sector—considered the second highest consumer of freshwater in Europe—has already been provided with sufficient wastewater characterization and treatment technologies, other woo...Whereas the pulp and paper industrial sector—considered the second highest consumer of freshwater in Europe—has already been provided with sufficient wastewater characterization and treatment technologies, other wood-based industries (e.g. furniture, floor production), which do not use water for manufacturing processes, generate different wastewater streams after: 1) cleaning/washing of machinery that applies adhesives and coatings onto wood surfaces;2) cleaning/washing of machinery that applies specific products for the curing phase of adhesives;3) cleaning/washing of sharp planar blades used for the sawn process and to prepare wood surfaces for the adhesive application;4) cleaning/washing of the floor;5) cleaning/washing of trucks and vehicles. The dilution of low-volumes of highly polluted wastewater is not acceptable any longer since conventional treatment plants are not designed for these types of industrial wastewater. There is a need for proper characterization, treatability studies, designing and testing alternative small size and cost-effective treatment systems for on-site implementation. Treatment systems based on sorption mechanisms are flexible, easy to operate and generate less sludge and several low-cost sorbents generated by forestry activities have advantageous physico-chemical characteristics. The current paper presents the preliminary results from a pilot treatment system consisting of an equalization tank, settling/sedimentation and two sorption reactors in parallel using Pinus sylvestris sawdust as sorbent implemented as part of an integrated water management plan in a wood-floor industry. The simple to operate and cost-effective pilot treatment system performs satisfactorily during an initial period of operation. The study shows an average 39% - 54% reduction of TPH;17% - 38% reduction of oil;2% - 15% of reduction of COD and;11% - 74% reduction of most toxic metals but for Co, Ni and Zn in the system B. Based on these results, Pinus sylvestris sawdust is a potential low-cost and abundant material to be considered for industrial wastewater treatment plants.展开更多
文摘This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.
基金financial support from the NSFC project(21501052 and 91622119)the China Postdoctoral Science Foundation(2015M570304)+2 种基金Special Funding for Postdoctoral of Heilongjiang Province(LBH-TZ06019)the Science Foundation for Excellent Youth of Harbin City of China(2016RQQXJ099)UNPYSCT-2016173
文摘It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH ? 2–12, which can imply its universal utilization. The prepared BiFeO_3/Carbon nanocomposites have also displayed excellent capacities(over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO_3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO_3/Carbon can be a suitable material used in treating industrial dye wastewater potentially.
基金Santander Bank for funding through the Research Intensification Program
文摘The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater.The composite was prepared by mixing phosphogypsum(PG),obtained from an industrial waste,and a natural clay mineral.The materials were characterized before and after use in adsorption by several techniques.Batch adsorption experiments were carried out,and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated.The optimum pH for the adsorption was found to be 4.The adsorption of these metal ions reached equilibrium after 2 h of contact.The pseudo-first-and the pseudo-second-order kinetic models,as well as the Freundlich and the Langmuir isotherm equations,were considered to describe the adsorption results.The maximum adsorbed amount of 85 mg·g^-1 Ag(I)and 108.3 mg·g?1 Au(III)was found.The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed.Strong acids appeared to be the best desorption agents to recover gold and silver ions.The use of aqua regia gave regeneration rates close to 95.3%and 94.3%for Ag(I)and Au(III),respectively.Finally,the removal of gold and silver ions from an industrial wastewater was tested in batch experiments,and percentage recoveries of 76.5%and 79.9%for Ag(I)and Au(III),respectively,were obtained.To carry out the industrial application of the proposed methodology,an economic viability study is required.
基金financially supported by PetroChina Scientific Research and Technology Development Project, China (2018A-0907, YGJ2019-11-01)the support from CFI and NSERC, Canada
文摘The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine animals. It is a carbohydrate polymer consisting of β-1,4-linked anhydro-D-glucose units with three hydroxyl groups per anhydroglucose unit(AGU). Cellulose-based materials have been used in food, industrial, pharmaceutical, paper, textile production, and in wastewater treatment applications due to their low cost, renewability,biodegradability, and non-toxicity. For water treatment in the oil and gas industry, cellulose-based materials can be used as adsorbents, flocculants, and oil/water separation membranes. In this review, the uses of cellulose-based materials for wastewater treatment in the oil & gas industry are summarized, and recent research progress in the following aspects are highlighted: crude oil spill cleaning, flocculation of solid suspended matter in drilling or oil recovery in the upstream oil industry, adsorption of heavy metal or chemicals, and separation of oil/water by cellulosic membrane in the downstream water treatment.
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KZZD-EW-06-02)National Natural Science Foundation of China(No.41201129)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.13YJAZH042)
文摘Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.
文摘Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens.
文摘Duckweed is a group of aquatic plants with the potential of wastewater remediation and fast accumulation of biomass. The accumulated biomass, rich in cellulose, starch and protein, can be used for biofuel, bio-fertilizer, animal feed and human food. Characterization of natural biodiversity of duckweed species is essential for the germplasm preservation and various practical applications. We have collected samples of duckweed in eastern China and characterized species biodiversity by genotyping, using chloroplast (atpF-atpH and psbK-psbI spacers). Spirodela polyrhiza was revealed as a clear dominant duckweed species in all locations of the area. Other duckweed species were identified as Landoltia punctata, Lemna aequinoctialis and Lemna turionifera. Selected isolates of these four species were used in the experiments to estimate their potential in removing nitrogen and phosphorus nutrients from municipal and industrial wastewater sampled at the local sewage plants. Duckweed was able to reduce the concentration of nitrogen up to 98% and phosphorus up to 96%. The presented data demonstrates high efficiency of the local duckweed isolates for bioremediation of different types of wastewater and the great potential of duckweed for wastewater treatment when incorporated into the purification chain.
文摘The local wastewater treatment facility in Yanbu Industrial City receives 24,000 m3/day of industrial wastewater. This wastewater, mostly from refineries and petrochemical industries, goes through physical, biological and chemical stages of treatment. However, the treated water still fails to pass some of the permissible levels set by governmental agencies. This research paper investigated the enhancement of the treatment processes to reduce the turbidity of the effluent treated water. Ferric chloride, ferrous sulfate, alum and commercial synthetic cationic polymer were tried as coagulants. Different conditions (i.e., pH, temperature, dose, stirring rate) were searched. Ferrous sulfate and polymer reduced the final turbidity to acceptable values with very low doses compared with other coagulant.
文摘Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter of the pipe, which results in increased wellhead pressure and lower injectivity. A detailed microbiological composition of biofilms and abiotic fingerprints use of mineral scale from an injection well has not been reported before. Therefore, biofilm and mineral scale samples from three depth intervals within a deep injection well (surface zone, D1= 0 - 61 m;intermediate zone, D2 = 62 - 457 m;and above the injection zone, D3 = 458 - 884 m) with recurrent biofilm development were collected to characterize the mineral composition and microbial community DNA. X-ray diffraction (XRD) analysis of the solids confirms the composition of the solids collected was mostly calcium carbonate (CaCO3) with minor contributions from common mineral salts. Microbiological fingerprinting suggests that methanogenic archaea and sulfate-reducing bacteria both of which are anaerobic biofilm producers were the most prevalent members of the prokaryotic community at all sampled depths. Methanosarcinae spp. increased with increasing depths, unlike other archaea. A non-pathogenic biofilm-producing Entamoeba dispar was the most prevalent member of the microbial domain (>30%) in all samples but was highest at the middle depth. The Chao alpha diversity indices for bacteria, viruses, and protozoans were highest at the shallow depth and gradually declined with increasing depth. The prevalent species above the injection zone depth are not barophilic organisms that thrive at high pressures, rather they are sulfate-reducing bacteria involved in anaerobic dissimilatory sulfate metabolism.
基金the National Key Research and Development Program of China(No.2019YFC0408303)the Natural Science Foundation of Hunan Province,China(No.2021JJ20069)+2 种基金the Changsha Science and Technology Project,China(Nos.kq2106016,kq2009005)Higher Education Discipline Innovation Project(111 Project),China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0887).
文摘The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.
文摘The aim of this work was to investigate the aerobic degradation of high-strength industrial (refinery) wastewaters in the inverse fluidized bed biological reactor, in which polypropylene particles of density 910 kg/m3 were fluidized by an upward flow of gas through a bed. Measurements of chemical oxygen demand (COD) versus residence time t were performed for various ratios of settled bed volume to reactor volume (Vb/VR) and air velocities u. The largest COD reduction, namely, from 54,840 to 2,190 mg/l, i.e. a 96% COD decrease, was achieved when the reactor was operated at the ratio (Vb/VR) = 0.55, air velocity u = 0.046 m/s and t = 65 h. Thus, these values of (Vb/VR), u and t can be considered as the optimal operating parameters for a reactor when used in treatment of high-strength refinery wastewaters. In the treatment operation conducted in a reactor optimally controlled at (Vb/VR) = 0.55, u = 0.046 m/s and t = 65 h, the conversions obtained for all phenolic constituents of the wastewater were larger than 95%. The conversions of about 90% were attained for other hydrocarbons.
文摘The studied area (Shoubra El Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area. Shebin El Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies. Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al Ahleya Plastic Company discharges the highest amounts of total Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.
文摘The essay covers the discharge and percentage of treatment of industrial wastewater in China before 1992,the analysis of industrial wastewater pollution to the environment and the problems and corrective measures to prevent and control the pollution caused by industrial wastewater in China.Water pollution is one of main environrnental problems in China. And industrial wastewater is a very important source to make water pollution. It is a key task to prevent industrial wastewater pollution and protect water quality of rivers, lakes (reservoirs), underground water in Chinese water environmental management.
文摘This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater generated from food companies,livestock,and industries were summarized and reported.Measurement parameters affecting the performance of ABRs are briefly discussed.The state-of-the-art laboratory studies are compiled and critically reviewed.Critical challenges and suggestions for future investigation are also addressed.
文摘Wastewater samples were collected from pulp and paper mill located in Kashipur (India) and were extracted using dichloromethane (DCM), chloroform and hexane solvents (all were HPLC-grade). The extracts were assayed for their mutagenic potential using Ames Salmonella mutagenicity assay. TA98 strain was found to be the most responsive, in terms of induction factor (Mi) and slope (m) of the initial linear dose-response curve as determined by linear regression analysis up to the increasing doses indicating the presence of frame shift mutagens in the test samples. Mutagenicity of different extracts is arranged as follows: dichloromethane extracted water samples > hexane extracted water samples > chloroform extracted water samples. Hexane extract exhibited maximum mutagenic index of 13.0 and induction factor (Mi) 2.48 with TA98. The order of responsiveness based on the mutagenic index and induction factor for the test samples was in the following order: TA98 > TA97a > TA100 > TA102 > TA104. Our findings suggest that TA97a, TA98, TA100, TA102, TA104 were sensitive towards the wastewater extracts and showed considerable mutagenicity.
文摘Being familiar with characteristics of industrial town effluents from various wastewater treatment units, which have high qualitative and quantitative variations and more uncertainties compared to urban wastewaters, plays very effective role in governing them. With regard to environmental issues, proper operation of wastewater treatment plants is of par- ticular importance that in the case of inappropriate utilization, they will cause serious problems. Processes that exist in environmental systems mostly have two major characteristics: they are dependent on many variables;and there are complex relationships between its components which make them very difficult to analyze. In order to achieve a better and efficient control over the operation of an industrial wastewater treatment plant (WWTP), powerful mathematical tool can be used that is based on recorded data from some basic parameters of wastewater during a period of treatment plant operation. In this study, the treatment plant was divided into two main subsystems including: Low TDS (Total Dissolved Solids) treatment unit and Biological unit (extended aeration). The multilayer perceptron feed forward neural network with a hidden layer and stop training method was used to predict quality parameters of the industrial effluent. Data of this study are related to the Fajr Industrial Wastewater Treatment Plant, located in Mahshahr—Iran that qualita- tive and quantitative characteristics of its units were used for training, calibration and validation of the neural model. Also, Principal Component Analysis (PCA) technique was applied to improve performance of generated models of neural networks. The results of L-TDS unit showed good accuracy of the models in estimating qualitative profile of wastewater but results of biological unit did not have sufficient accuracy to being used. This model facilitates evaluating the performance of each treatment plant units through comparing the results of prediction model with the standard amount of outputs.
文摘The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which can provide theoretical references for the choice of wastewater treatment process.
文摘Phenol, as a pure substance, is used in many fields due to its disinfectant, germicidal, local anaesthetic and peptizing properties. Aqueous solutions of phenol are produced as a waste of these industries and are discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water due to industrial discharge or use of phenolic products. The aim of this study was to evaluate the phenol removal capability of enzymes from low-phenol-content (up to 5%) industrial wastewaters and to optimize the reaction conditions. For this purpose, two different enzymes namely, Laccase and Peroxidase were investigated with respect to their phenol removal capacities. The enzymatic reaction conditions were optimized using Response Surface Methodology (RSM). As a result 78% phenol removal was achieved with laccase using a model wastewater. In the studies where the enzyme was immobilized, a 50% removal was achieved indicating that further optimization was needed in this area.
文摘Whereas the pulp and paper industrial sector—considered the second highest consumer of freshwater in Europe—has already been provided with sufficient wastewater characterization and treatment technologies, other wood-based industries (e.g. furniture, floor production), which do not use water for manufacturing processes, generate different wastewater streams after: 1) cleaning/washing of machinery that applies adhesives and coatings onto wood surfaces;2) cleaning/washing of machinery that applies specific products for the curing phase of adhesives;3) cleaning/washing of sharp planar blades used for the sawn process and to prepare wood surfaces for the adhesive application;4) cleaning/washing of the floor;5) cleaning/washing of trucks and vehicles. The dilution of low-volumes of highly polluted wastewater is not acceptable any longer since conventional treatment plants are not designed for these types of industrial wastewater. There is a need for proper characterization, treatability studies, designing and testing alternative small size and cost-effective treatment systems for on-site implementation. Treatment systems based on sorption mechanisms are flexible, easy to operate and generate less sludge and several low-cost sorbents generated by forestry activities have advantageous physico-chemical characteristics. The current paper presents the preliminary results from a pilot treatment system consisting of an equalization tank, settling/sedimentation and two sorption reactors in parallel using Pinus sylvestris sawdust as sorbent implemented as part of an integrated water management plan in a wood-floor industry. The simple to operate and cost-effective pilot treatment system performs satisfactorily during an initial period of operation. The study shows an average 39% - 54% reduction of TPH;17% - 38% reduction of oil;2% - 15% of reduction of COD and;11% - 74% reduction of most toxic metals but for Co, Ni and Zn in the system B. Based on these results, Pinus sylvestris sawdust is a potential low-cost and abundant material to be considered for industrial wastewater treatment plants.