This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while...This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.展开更多
AIM:To represent our clinical experience in the treatment of intestinal perforation arising from typhoid fever.METHODS:The records of 22 surgically-treated patients with typhoid intestinal perforation were evaluated r...AIM:To represent our clinical experience in the treatment of intestinal perforation arising from typhoid fever.METHODS:The records of 22 surgically-treated patients with typhoid intestinal perforation were evaluated retrospectively.RESULTS:There were 18 males and 4 females,mean age 37 years(range,8-64 years).Presenting symptoms were fever,abdominal pain,diarrhea or constipation.Sixteen cases were subjected to segmental resection and end-to-end anastomosis,while 3 cases received 2-layered primary repair following debridement,one case with multiple perforations received 2-layered primary repair and end ileostomy,one case received segmental resection and end-to-end anastomosis followed by an end ileostomy,and one case received segmental resection and end ileostomy with mucous fistula operation.Postoperative morbidity was seen in 5 cases and mortality was found in one case.CONCLUSION:Intestinal perforation resulting from Salmonella typhi is an important health problem in Eastern and Southeastern Turkey.In management of this illness,early and appropriate surgical intervention is vital.展开更多
A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical waste- water treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond su...A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical waste- water treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond surface, the BDD elec- trode possesses a powerful capability of electrochemical oxidation of organic compounds, especially in the pulse current mode. The influences of pulse current parameters such as current density, pulse duty cycle, and frequency were investigated in terms of chemical oxygen demand (COD) removal, average current efficiency, and specific energy consumption. The results demon- strated that the relatively high COD removal and low specific energy consumption were obtained simultaneously only if the current density or pulse duty cycle was adjusted to a reasonable value. Increasing the frequency slightly enhanced the COD re- moval and average current efficiency. A pulse-BDD anode system showed a stronger energy saving ability than a constant-BDD anode system when the electrochemical oxidation of phenol of the two systems was compared. The results prove that the pulse current technique is more cost-effective and more suitable for a BDD anode system for real wastewater treatment. A kinetic analysis was presented to explain the above results.展开更多
文摘This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.
文摘AIM:To represent our clinical experience in the treatment of intestinal perforation arising from typhoid fever.METHODS:The records of 22 surgically-treated patients with typhoid intestinal perforation were evaluated retrospectively.RESULTS:There were 18 males and 4 females,mean age 37 years(range,8-64 years).Presenting symptoms were fever,abdominal pain,diarrhea or constipation.Sixteen cases were subjected to segmental resection and end-to-end anastomosis,while 3 cases received 2-layered primary repair following debridement,one case with multiple perforations received 2-layered primary repair and end ileostomy,one case received segmental resection and end-to-end anastomosis followed by an end ileostomy,and one case received segmental resection and end ileostomy with mucous fistula operation.Postoperative morbidity was seen in 5 cases and mortality was found in one case.CONCLUSION:Intestinal perforation resulting from Salmonella typhi is an important health problem in Eastern and Southeastern Turkey.In management of this illness,early and appropriate surgical intervention is vital.
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20110006110011)the National Natural Science Foundation of China (No. 51272024)
文摘A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical waste- water treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond surface, the BDD elec- trode possesses a powerful capability of electrochemical oxidation of organic compounds, especially in the pulse current mode. The influences of pulse current parameters such as current density, pulse duty cycle, and frequency were investigated in terms of chemical oxygen demand (COD) removal, average current efficiency, and specific energy consumption. The results demon- strated that the relatively high COD removal and low specific energy consumption were obtained simultaneously only if the current density or pulse duty cycle was adjusted to a reasonable value. Increasing the frequency slightly enhanced the COD re- moval and average current efficiency. A pulse-BDD anode system showed a stronger energy saving ability than a constant-BDD anode system when the electrochemical oxidation of phenol of the two systems was compared. The results prove that the pulse current technique is more cost-effective and more suitable for a BDD anode system for real wastewater treatment. A kinetic analysis was presented to explain the above results.