Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwate...Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.展开更多
Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the m...Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and the An values declined rapidly, finally all of them were trans formed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are - 3. 0‰--5. 6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (fv=1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components such as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of An in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along micro fractures, and precipitated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245-292℃ and 95.4-131. 7MPa respectively; the salinity is 12. 88-16. 33 wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F- and Cl-, while the gaseous phases are rich in CO2 and CH4. The δDand δ18 O values of the ore-forming fluid are - 84. 48‰- - 91. 73‰ and - 0. 247‰-+2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water.展开更多
The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Peng...The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Pengyang County, in Ningxia, China. Based on understanding of the hydrogeological conditions in Pengyang County, the chemical evolution characteristics of groundwater in the plain area were analyzed. PHREEQC geochemical modeling software was used to perform hydrochemical modeling of water-rock interaction and to quantitatively analyze the evolution processes and the formation mechanisms of the local groundwater. Geochemical modeling was performed for two groundwater paths. The results showed that, along path 1, Na+ adsorption played the leading role in the precipitation process and its amount was the largest, up to 6.08 mmol/L; cation exchange was significant along path 1, while along simulated path 2, albite accounted for the largest amount of dissolution, reaching 9.06 mmol/L, and the cation exchange was not significant. According to the modeling results, along the groundwater flow path, calcite and dolomite showed oversaturated status with a precipitation trend, while the fluorite and gypsum throughout the simulated path were not saturated and showed a dissolution trend. The total dissolved solids (TDS) increased and water quality worsened along the flow path. The dissolution reactions of albite, CO2, and halite, the exchange adsorption reaction of Na+, and the precipitation of sodium montmorillonite and calcite were the primary hydrogeochemical reactions, resulting in changes of hydrochemical ingredients.展开更多
基金funded by the National Key R&D Program of China(2023YFC3806800).
文摘Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.
文摘Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and the An values declined rapidly, finally all of them were trans formed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are - 3. 0‰--5. 6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (fv=1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components such as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of An in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along micro fractures, and precipitated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245-292℃ and 95.4-131. 7MPa respectively; the salinity is 12. 88-16. 33 wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F- and Cl-, while the gaseous phases are rich in CO2 and CH4. The δDand δ18 O values of the ore-forming fluid are - 84. 48‰- - 91. 73‰ and - 0. 247‰-+2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water.
基金supported by the National Natural Science Foundation of China (Grant No.40772160)the Research on Drinking Water Environment and Endemic in Villages and Small Towns in New Socialist Countryside Project (Grant No.010)supported by the Ningxia Land and Resources Department,and the Program of Introducing Talents of Discipline to Universities (111 Project) (Grant No.B08039)
文摘The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Pengyang County, in Ningxia, China. Based on understanding of the hydrogeological conditions in Pengyang County, the chemical evolution characteristics of groundwater in the plain area were analyzed. PHREEQC geochemical modeling software was used to perform hydrochemical modeling of water-rock interaction and to quantitatively analyze the evolution processes and the formation mechanisms of the local groundwater. Geochemical modeling was performed for two groundwater paths. The results showed that, along path 1, Na+ adsorption played the leading role in the precipitation process and its amount was the largest, up to 6.08 mmol/L; cation exchange was significant along path 1, while along simulated path 2, albite accounted for the largest amount of dissolution, reaching 9.06 mmol/L, and the cation exchange was not significant. According to the modeling results, along the groundwater flow path, calcite and dolomite showed oversaturated status with a precipitation trend, while the fluorite and gypsum throughout the simulated path were not saturated and showed a dissolution trend. The total dissolved solids (TDS) increased and water quality worsened along the flow path. The dissolution reactions of albite, CO2, and halite, the exchange adsorption reaction of Na+, and the precipitation of sodium montmorillonite and calcite were the primary hydrogeochemical reactions, resulting in changes of hydrochemical ingredients.