Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low h...Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low humidity resistance. The purpose of this study is to prepare a water-soluble potassium carbonate sand core with addition of kaolin by the hot-temping method. The effects of kaolin on tensile strength, humidity resistance, fracture mechanism, as well as the gas evolution and collapsibility of WSCs were investigated. Results show that both the crystal morphology and the fracture mechanism of the inorganic salt are changed under the participation of kaolin, contributing to the increase of the tensile strength and the humidity resistance of the core. With the addition of 3wt.% kaolin, the tensile strength could be increased by a factor of 2, reached 1.50 MPa and the hygroscopic rate could be decreased by 14%, achieved 0.559%(after stored for 8 h), respectively. As the addition amount of kaolin increases from 0wt.% to 3wt.%, the main fracture mechanism changes from a adhesive to a cohesive fracture mechanism. The water-soluble potassium carbonate core obtained has the low gas evolution and excellent collapsibility, which makes it suitable for casting low melting metal with complex cavities and crooked channels.展开更多
Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels;however,the soluble core can absorb water easily from the air at room temperature.To im...Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels;however,the soluble core can absorb water easily from the air at room temperature.To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core,a precipitation method and a two-level-three-full factorial central composite design were used,respectively.The properties of the cores treated by the precipitation method were compared with that without any treatment.Through a systematical study by means of both an environmental scanning electron microscope(ESEM) and an energy dispersive X-ray(EDX) analyzer,the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration,4% water concentration and 0 min ignition time.The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.展开更多
基金supported by the National Natural Science Foundation of China(No.51405002)
文摘Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low humidity resistance. The purpose of this study is to prepare a water-soluble potassium carbonate sand core with addition of kaolin by the hot-temping method. The effects of kaolin on tensile strength, humidity resistance, fracture mechanism, as well as the gas evolution and collapsibility of WSCs were investigated. Results show that both the crystal morphology and the fracture mechanism of the inorganic salt are changed under the participation of kaolin, contributing to the increase of the tensile strength and the humidity resistance of the core. With the addition of 3wt.% kaolin, the tensile strength could be increased by a factor of 2, reached 1.50 MPa and the hygroscopic rate could be decreased by 14%, achieved 0.559%(after stored for 8 h), respectively. As the addition amount of kaolin increases from 0wt.% to 3wt.%, the main fracture mechanism changes from a adhesive to a cohesive fracture mechanism. The water-soluble potassium carbonate core obtained has the low gas evolution and excellent collapsibility, which makes it suitable for casting low melting metal with complex cavities and crooked channels.
文摘Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels;however,the soluble core can absorb water easily from the air at room temperature.To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core,a precipitation method and a two-level-three-full factorial central composite design were used,respectively.The properties of the cores treated by the precipitation method were compared with that without any treatment.Through a systematical study by means of both an environmental scanning electron microscope(ESEM) and an energy dispersive X-ray(EDX) analyzer,the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration,4% water concentration and 0 min ignition time.The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.
文摘为使棉维包芯纱顺利退维,并减少退维过程中纱线强力的损失,对32.5 tex棉维包芯纱(芯纱为7.9 tex维纶纱)的退维工艺参数进行了优化。通过采用正交试验法,测试并对比纱线退维量、退维后纱线的吸湿性和纱线强力等指标,得出最佳退维工艺参数为:在100℃沸水中不加预加张力直接浸泡40 m in,浴比为1∶30。