应用农田水氮管理模型(water and nitrogen management model,WNMM)模拟潮土水氮运移过程,以建立针对该地区气候环境和土壤性质的田间水氮优化管理方案。利用田间试验对WNMM模拟结果进行了校验,结果表明该模型能较好地模拟潮土地区的土...应用农田水氮管理模型(water and nitrogen management model,WNMM)模拟潮土水氮运移过程,以建立针对该地区气候环境和土壤性质的田间水氮优化管理方案。利用田间试验对WNMM模拟结果进行了校验,结果表明该模型能较好地模拟潮土地区的土壤水氮运移过程,农田蒸散量、土壤含水量和硝态氮含量的模拟值与实测值在α=0.01水平上相关显著,误差范围也令人满意。根据土壤实时水氮含量数据,建立了按作物生长亏缺动态调整灌溉、施氮的优化农田水氮管理方案。在多年平均气象条件下,与传统管理模式相比,优化管理模式不仅能为作物生长提供更好的土壤水肥条件,而且每年可节约灌溉水163.5mm、氮肥130kg.hm-2,减少土壤水渗漏264.6mm、氮素淋失71.1kg.hm-2。展开更多
为优化不同降水年型下春小麦高产稳产和高效利用水氮资源的管理决策方案,利用2009-2012年内蒙古自治区额尔古纳市上库力农场试验站与拉布大林农场试验站春小麦(内麦19)的试验观测资料,确定APSIM-wheat模型中小麦生长发育关键参数;基于...为优化不同降水年型下春小麦高产稳产和高效利用水氮资源的管理决策方案,利用2009-2012年内蒙古自治区额尔古纳市上库力农场试验站与拉布大林农场试验站春小麦(内麦19)的试验观测资料,确定APSIM-wheat模型中小麦生长发育关键参数;基于校准后的APSIM-wheat模型模拟分析1967-2017年雨养条件下春小麦生长发育过程,并依据降水量划分了3种降水年型(干旱、平水和湿润年型),根据土壤水分亏缺指数(soil water deficit on photosynthesis,SWD_(ef))确定最优水分管理时期;设计8个灌溉量梯度(15、30、45、60、90、120、150和180 mm)和13个施N量梯度(30、45、60、75、90、105、120、150、180、210、240、270和300 kg·hm^(-2))情景模式,结合水氮管理决策的遴选关键指标[水分利用效率(water use efficiency,WUE)、氮肥利用效率(nitrogen use efficiency,NUE)和产量],探究不同气候年型下最优春小麦水氮管理模式。结果表明:(1)校准后的APSIM-wheat模型春小麦发育期模块(出苗期、抽穗期和成熟期)模拟值与观测值的均方根误差(root mean square error,RMSE)在1.17~3.64 d范围内,归一化均方根误差(normalized root mean square error,NRMSE)在0.82%~1.90%范围内;产量模块模拟值与观测值的RMSE为371.50 kg·hm^(-2),NRMSE为8.54%,说明APSIM-wheat模型可以较好地反映不同降水年型下小麦的动态生长发育过程。(2)雨养条件下春小麦分蘖期—拔节期、拔节期—抽穗期和抽穗期—开花期的SWD_(ef)较低,且在生育期内仅灌溉一次的前提下,拔节期灌溉可以减轻干旱胁迫并显著提高产量。(3)干旱、平水和湿润年型春小麦拔节期最优水氮管理模式分别为灌溉量60 mm和施氮量105 kg·hm^(-2)、灌溉量60 mm和施氮量120 kg·hm^(-2)、灌溉量30 mm和施氮量150 kg·hm^(-2),其产量分别为4810.96±551.43、5378.06±768.86和6421.33±454.09 kg·hm^(-2)。展开更多
Soils provide the structural support, water andnutrients for plants in nature and are considered to be thefoundation of agriculture production. Improving soilquality and soil health has been advocated as the goal ofso...Soils provide the structural support, water andnutrients for plants in nature and are considered to be thefoundation of agriculture production. Improving soilquality and soil health has been advocated as the goal ofsoil management toward sustainable agricultural intensifi-cation. There have been renewed efforts to define andquantify soil quality and soil health but establishing aconsensus on the key indicators remains difficult. It isargued that such difficulties are due to the former ways ofthinking in soil management which largely focus on soilproperties alone. A systems approach that treats soils as akey component of agricultural production systems ispromoted. It is argued that soil quality must be quantifiedin terms of crop productivity and impacts on ecosystemsservices that are also strongly driven by climate andmanagement interventions. A systems modeling approachcaptures the interactions among climate, soil, crops andmanagement, and their impacts on system performance,thus helping to quantify the value and quality of soils.Here, three examples are presented to demonstrate this. Inthis systems context, soil management must be an integralpart of systems management practices that also includemanaging the crops and cropping systems under specificclimatic conditions, with cognizance of future climatechange.展开更多
【目的】定量化不同水氮管理模式下的农田水氮利用效率和环境效应,为制定优化的水肥管理措施提供理论指导。【方法】在华北平原北部的冬小麦-夏玉米轮作区,设置了农民习惯和基于土壤水分养分实时监测的优化管理两种水氮管理模式。首先,...【目的】定量化不同水氮管理模式下的农田水氮利用效率和环境效应,为制定优化的水肥管理措施提供理论指导。【方法】在华北平原北部的冬小麦-夏玉米轮作区,设置了农民习惯和基于土壤水分养分实时监测的优化管理两种水氮管理模式。首先,应用田间系统的观测数据(2004年10月至2006年9月)对水氮管理模型进行了校验,然后应用校验后的模型计算得到了两种水氮管理模式下的作物产量、农田水分渗漏、氮素淋失、气体损失和水氮利用效率等。【结果】2年内农民习惯和优化管理下的灌水量差别不大,而优化管理的施肥量(540 kg N.hm-2)仅为农民习惯施肥量(1 100 kg N.hm-2)的一半。农民习惯和优化管理模式下的作物年平均产量分别为11 579和11 748 kg.hm-2;两者的水分利用效率分别为1.65和1.72 kg.m-3;氮素利用效率分别为15和24 kg.kg-1 N。氮素淋失和氨挥发是氮素损失的主要途径,农民习惯和优化管理下的氮素淋失分别为407和68 kg N.hm-2;氨挥发分别达到了282和104 kg N.hm-2。【结论】优化管理下的作物产量和水氮利用效率都高于农民习惯管理的,并且氮素损失明显低于农民习惯管理。因此,为了保证该地区的农业可持续发展,必须改进当前农民习惯的水氮管理措施。展开更多
通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作...通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作物系统碳氮水循环过程模型WHCNS进行了校验,应用校验后的模型定量化分析了不同肥料管理模式下的农田氮素淋失、水氮利用效率及氮素平衡。结果表明:3个处理6年的总渗漏量均很大,在1230 mm左右,占总降雨量(无灌溉)的35%~38%,与试验地土壤质地偏砂性有关。3个处理的水分利用效率大小顺序为T3>T1>T2,作物产量的差异是其主要原因,T3处理的作物产量最高而T2处理的作物产量最低。3个处理的氮素利用效率大小顺序为T3>T2>T1,氮素的主要去向是作物吸收和硝态氮淋洗,其中只施化肥处理的氮素淋洗率最大,占氮肥总量的33.6%,有机无机配施处理的氮素淋洗率最低,仅占氮肥总量的23.5%。经过6年轮作后的土壤与初始条件相比,只施用化肥的土壤氮素亏缺严重,达到144 kg N·hm-2,而加入有机肥模式土壤氮素亏缺较小,T2和T3处理分别为55、79 kg N·hm-2。有机无机配施模式在保证作物较高产量的情况下,不仅减小了硝态氮的淋洗,提高了水氮利用效率,而且有利于保持土壤氮素平衡,是3种肥料管理模式中最好的。展开更多
为阐明不同水氮管理模式下玉米叶片衰老过程对玉米中氮素转移的影响,进行了大田试验,通过设置3个灌溉水平(150、300、450 m 3/hm^2)和4个施氮水平(0、180、220、260 kg/hm^2),探究不同水氮组合下玉米叶片衰老启动时间、叶片衰老速率、...为阐明不同水氮管理模式下玉米叶片衰老过程对玉米中氮素转移的影响,进行了大田试验,通过设置3个灌溉水平(150、300、450 m 3/hm^2)和4个施氮水平(0、180、220、260 kg/hm^2),探究不同水氮组合下玉米叶片衰老启动时间、叶片衰老速率、最大绿叶衰减速率出现时间及叶片衰老过程对叶片氮转移效率和籽粒灌浆过程的影响。结果表明:各处理叶片衰老启动时间均发生在吐丝后10 d左右,其受灌水和施氮影响较小;在灌水充足条件下,增加施氮量可以降低叶片衰老速率,延长最大绿叶衰减速率出现时间;施氮量相同时,随灌水量增加吐丝期叶片氮素积累量呈先增加、后减小的趋势;在一定范围内,叶片氮转移效率随最大绿叶衰减速率出现时间的增加而提高,最高可提升25.78个百分点;籽粒灌浆速率呈先慢后快、最后趋于平缓的变化规律,且在吐丝后30~40 d达到最大,延缓叶片衰老速率有助于提高百粒质量;当灌水量为300 m 3/hm^2、施氮量为260 kg/hm^2时,最大绿叶衰减速率出现时间为吐丝后48.90 d,叶片氮转移效率最高,百粒质量最大,是最佳灌水、施氮组合。展开更多
文摘应用农田水氮管理模型(water and nitrogen management model,WNMM)模拟潮土水氮运移过程,以建立针对该地区气候环境和土壤性质的田间水氮优化管理方案。利用田间试验对WNMM模拟结果进行了校验,结果表明该模型能较好地模拟潮土地区的土壤水氮运移过程,农田蒸散量、土壤含水量和硝态氮含量的模拟值与实测值在α=0.01水平上相关显著,误差范围也令人满意。根据土壤实时水氮含量数据,建立了按作物生长亏缺动态调整灌溉、施氮的优化农田水氮管理方案。在多年平均气象条件下,与传统管理模式相比,优化管理模式不仅能为作物生长提供更好的土壤水肥条件,而且每年可节约灌溉水163.5mm、氮肥130kg.hm-2,减少土壤水渗漏264.6mm、氮素淋失71.1kg.hm-2。
文摘为优化不同降水年型下春小麦高产稳产和高效利用水氮资源的管理决策方案,利用2009-2012年内蒙古自治区额尔古纳市上库力农场试验站与拉布大林农场试验站春小麦(内麦19)的试验观测资料,确定APSIM-wheat模型中小麦生长发育关键参数;基于校准后的APSIM-wheat模型模拟分析1967-2017年雨养条件下春小麦生长发育过程,并依据降水量划分了3种降水年型(干旱、平水和湿润年型),根据土壤水分亏缺指数(soil water deficit on photosynthesis,SWD_(ef))确定最优水分管理时期;设计8个灌溉量梯度(15、30、45、60、90、120、150和180 mm)和13个施N量梯度(30、45、60、75、90、105、120、150、180、210、240、270和300 kg·hm^(-2))情景模式,结合水氮管理决策的遴选关键指标[水分利用效率(water use efficiency,WUE)、氮肥利用效率(nitrogen use efficiency,NUE)和产量],探究不同气候年型下最优春小麦水氮管理模式。结果表明:(1)校准后的APSIM-wheat模型春小麦发育期模块(出苗期、抽穗期和成熟期)模拟值与观测值的均方根误差(root mean square error,RMSE)在1.17~3.64 d范围内,归一化均方根误差(normalized root mean square error,NRMSE)在0.82%~1.90%范围内;产量模块模拟值与观测值的RMSE为371.50 kg·hm^(-2),NRMSE为8.54%,说明APSIM-wheat模型可以较好地反映不同降水年型下小麦的动态生长发育过程。(2)雨养条件下春小麦分蘖期—拔节期、拔节期—抽穗期和抽穗期—开花期的SWD_(ef)较低,且在生育期内仅灌溉一次的前提下,拔节期灌溉可以减轻干旱胁迫并显著提高产量。(3)干旱、平水和湿润年型春小麦拔节期最优水氮管理模式分别为灌溉量60 mm和施氮量105 kg·hm^(-2)、灌溉量60 mm和施氮量120 kg·hm^(-2)、灌溉量30 mm和施氮量150 kg·hm^(-2),其产量分别为4810.96±551.43、5378.06±768.86和6421.33±454.09 kg·hm^(-2)。
基金We acknowledge funding from the Australia-China Joint Research Centre:Healthy Soils for Sustainable Food Production and Environmental Quality(ACSRF48165)the CSIRO and the Chinese Academy of Agricultural Sciences through the research project“Scientific Benchmarks for Sustainable Agricultural Intensification”.
文摘Soils provide the structural support, water andnutrients for plants in nature and are considered to be thefoundation of agriculture production. Improving soilquality and soil health has been advocated as the goal ofsoil management toward sustainable agricultural intensifi-cation. There have been renewed efforts to define andquantify soil quality and soil health but establishing aconsensus on the key indicators remains difficult. It isargued that such difficulties are due to the former ways ofthinking in soil management which largely focus on soilproperties alone. A systems approach that treats soils as akey component of agricultural production systems ispromoted. It is argued that soil quality must be quantifiedin terms of crop productivity and impacts on ecosystemsservices that are also strongly driven by climate andmanagement interventions. A systems modeling approachcaptures the interactions among climate, soil, crops andmanagement, and their impacts on system performance,thus helping to quantify the value and quality of soils.Here, three examples are presented to demonstrate this. Inthis systems context, soil management must be an integralpart of systems management practices that also includemanaging the crops and cropping systems under specificclimatic conditions, with cognizance of future climatechange.
文摘【目的】定量化不同水氮管理模式下的农田水氮利用效率和环境效应,为制定优化的水肥管理措施提供理论指导。【方法】在华北平原北部的冬小麦-夏玉米轮作区,设置了农民习惯和基于土壤水分养分实时监测的优化管理两种水氮管理模式。首先,应用田间系统的观测数据(2004年10月至2006年9月)对水氮管理模型进行了校验,然后应用校验后的模型计算得到了两种水氮管理模式下的作物产量、农田水分渗漏、氮素淋失、气体损失和水氮利用效率等。【结果】2年内农民习惯和优化管理下的灌水量差别不大,而优化管理的施肥量(540 kg N.hm-2)仅为农民习惯施肥量(1 100 kg N.hm-2)的一半。农民习惯和优化管理模式下的作物年平均产量分别为11 579和11 748 kg.hm-2;两者的水分利用效率分别为1.65和1.72 kg.m-3;氮素利用效率分别为15和24 kg.kg-1 N。氮素淋失和氨挥发是氮素损失的主要途径,农民习惯和优化管理下的氮素淋失分别为407和68 kg N.hm-2;氨挥发分别达到了282和104 kg N.hm-2。【结论】优化管理下的作物产量和水氮利用效率都高于农民习惯管理的,并且氮素损失明显低于农民习惯管理。因此,为了保证该地区的农业可持续发展,必须改进当前农民习惯的水氮管理措施。
文摘通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作物系统碳氮水循环过程模型WHCNS进行了校验,应用校验后的模型定量化分析了不同肥料管理模式下的农田氮素淋失、水氮利用效率及氮素平衡。结果表明:3个处理6年的总渗漏量均很大,在1230 mm左右,占总降雨量(无灌溉)的35%~38%,与试验地土壤质地偏砂性有关。3个处理的水分利用效率大小顺序为T3>T1>T2,作物产量的差异是其主要原因,T3处理的作物产量最高而T2处理的作物产量最低。3个处理的氮素利用效率大小顺序为T3>T2>T1,氮素的主要去向是作物吸收和硝态氮淋洗,其中只施化肥处理的氮素淋洗率最大,占氮肥总量的33.6%,有机无机配施处理的氮素淋洗率最低,仅占氮肥总量的23.5%。经过6年轮作后的土壤与初始条件相比,只施用化肥的土壤氮素亏缺严重,达到144 kg N·hm-2,而加入有机肥模式土壤氮素亏缺较小,T2和T3处理分别为55、79 kg N·hm-2。有机无机配施模式在保证作物较高产量的情况下,不仅减小了硝态氮的淋洗,提高了水氮利用效率,而且有利于保持土壤氮素平衡,是3种肥料管理模式中最好的。
文摘为阐明不同水氮管理模式下玉米叶片衰老过程对玉米中氮素转移的影响,进行了大田试验,通过设置3个灌溉水平(150、300、450 m 3/hm^2)和4个施氮水平(0、180、220、260 kg/hm^2),探究不同水氮组合下玉米叶片衰老启动时间、叶片衰老速率、最大绿叶衰减速率出现时间及叶片衰老过程对叶片氮转移效率和籽粒灌浆过程的影响。结果表明:各处理叶片衰老启动时间均发生在吐丝后10 d左右,其受灌水和施氮影响较小;在灌水充足条件下,增加施氮量可以降低叶片衰老速率,延长最大绿叶衰减速率出现时间;施氮量相同时,随灌水量增加吐丝期叶片氮素积累量呈先增加、后减小的趋势;在一定范围内,叶片氮转移效率随最大绿叶衰减速率出现时间的增加而提高,最高可提升25.78个百分点;籽粒灌浆速率呈先慢后快、最后趋于平缓的变化规律,且在吐丝后30~40 d达到最大,延缓叶片衰老速率有助于提高百粒质量;当灌水量为300 m 3/hm^2、施氮量为260 kg/hm^2时,最大绿叶衰减速率出现时间为吐丝后48.90 d,叶片氮转移效率最高,百粒质量最大,是最佳灌水、施氮组合。