期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental study on the flow behaviour of water-sand mixtures in fractured rock specimens 被引量:14
1
作者 Boyang Zhang Qingyuan He +1 位作者 Zhibin Lin Zhenhua Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期377-385,共9页
The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test... The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test system is used in this paper to conduct laboratory experiments in order to study the influence of the particle size distribution,the void ratio,and the initial mass of Aeolian sand on the flow behavior.It is concluded that the water flow velocity is insensitive to the initial mass of the Aeolian sand but increases with the power exponent in the Talbot formula and the specimen height.The outflow of the Aeolian sand increases with the power exponent in the Talbot formula,the specimen height,and the initial mass of the Aeolian sand.Besides,the outflow of the Aeolian sand changes exponentially with the water flow velocity.Finally,it is found that the fractured specimen has a maximum sand filtration capacity beyond which the outflow of the Aeolian sand significantly increases with the initial mass of the Aeolian sand. 展开更多
关键词 water inrush and sand gushing accidents Seepage flow of water-sand mixtures Fractured specimens sand filtration capacity
下载PDF
Numerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining 被引量:16
2
作者 HANG Yuan ZHANG Gai-ling YANG Guo-yong 《Mining Science and Technology》 EI CAS 2009年第3期312-316,共5页
With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of th... With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level. 展开更多
关键词 mining under water body water and sand inrush unconsolidated aquifer drainage numerical simulation
下载PDF
Simulation of Water-Resistance of a Clay Layer During Mining:Analysis of a Safe Water Head 被引量:10
3
作者 DONG Qing-hong CAI Rong YANG Wei-feng 《Journal of China University of Mining and Technology》 EI 2007年第3期345-348,共4页
Given previous research and prototypical geological conditions of a mining workface,we simulated fis-sure development in clay layers at the bottom of Quaternary strata and above bedrock,sand and water inrush during mi... Given previous research and prototypical geological conditions of a mining workface,we simulated fis-sure development in clay layers at the bottom of Quaternary strata and above bedrock,sand and water inrush during mining by model experiments. The results show that V-shaped fissures usually occur in the bottom clay layer at the front top of the active face and that the position of these fissures changes periodically with ground pressure intervals. These fissures occur exactly in the area where the horizontal strain is concentrated. The results also demonstrate that the permeability coefficient of the cracked clay decreases while fissures tend to close. The permeability of the cracked bottom clay layer increases rapidly after a turning point in the permeability coefficient-water head curve (K-H curve) under a certain vertical load. Under static water pressure,the permeability coefficient of cracked clay decreases when load increases. A turning point in the K-H curve showed up and can be seen as a cutoff point to de-cide water inrush under a certain load level. Under an instantaneous water head,the greatest ability of the cracked clay to avoid drastic water inflow is a little higher than that under static conditions. 展开更多
关键词 model testing water-resistance of the clay layer safety water head water and sand inrush
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部