期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Treatment of submerged hollow fiber ultrafiltration membrane for reuse of sludge water
1
作者 姚宏 单文广 +1 位作者 孙明东 王晓爽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第2期183-187,共5页
To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the sub... To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants. 展开更多
关键词 filter backwash water settling tank sludge water REUSE membrane technology
下载PDF
Evaluation of drinking water treatment combined filter backwash water recycling technology based on comet and micronucleus assay 被引量:9
2
作者 Ting Chen Yongpeng Xu +3 位作者 Zhiquan Liu Shijun Zhu Wenxin Shi Fuyi Cui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期61-70,共10页
Based on the fact that recycling of combined filter backwash water(CFBW)directly to drinking water treatment plants(WTP)is considered to be a feasible method to enhance pollutant removal efficiency,we were motivat... Based on the fact that recycling of combined filter backwash water(CFBW)directly to drinking water treatment plants(WTP)is considered to be a feasible method to enhance pollutant removal efficiency,we were motivated to evaluate the genotoxicity of water samples from two pilot-scale drinking water treatment systems,one with recycling of combined backwash water,the other one with a conventional process.An integrated approach of the comet and micronucleus(MN)assays was used with zebrafish(Danio rerio)to investigate the water genotoxicity in this study.The total organic carbon(TOC),dissolved organic carbon(DOC),and trihalomethane formation potential(THMFP),of the recycling process were lower than that of the conventional process.All the results showed that there was no statistically significant difference(P〉0.05)between the conventional and recycling processes,and indicated that the genotoxicity of water samples from the recycling process did not accumulate in 15 day continuous recycling trial.It was worth noting that there was correlation between the concentrations of TOC,DOC,UV(254),and THMFPs in water and the DNA damage score,with corresponding R^2 values of 0.68,0.63,0.28,and 0.64.Nevertheless,both DNA strand breaks and MN frequency of all water samples after disinfection were higher than that of water samples from the two treatment units,which meant that the disinfection by-products(DBPs)formed by disinfection could increase the DNA damage.Both the comet and MN tests suggest that the recycling process did not increase the genotoxicity risk,compared to the traditional process. 展开更多
关键词 Combined filter backwash water Drinking water treatment Genotoxicity Comet assay Micronucleus
原文传递
Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition 被引量:4
3
作者 Haiqing Chang Heng Liang +3 位作者 Fangshu Qu Jun Ma Nanqi Ren Guibai Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期177-186,共10页
As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration(UF) systems in water treatment processes. In this work, a comparative s... As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration(UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid(HA). Various types of backwash water, including UF permeate, Milli-Q water, Na Cl solution, CaCl_2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na+or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca^(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca^(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca^(2+) content.Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na+and HA, respectively. 展开更多
关键词 Ultrafiltration Membrane fouling Hydraulic cleaning Backwash water composition Humic acid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部