Long-term variations of phytoplankton chlorophyll-a (Chl-a), nutrients, and suspended solids (SS) in Taihu Lake, a large shallow freshwater lake in China, during algal bloom seasons from May to August were analyze...Long-term variations of phytoplankton chlorophyll-a (Chl-a), nutrients, and suspended solids (SS) in Taihu Lake, a large shallow freshwater lake in China, during algal bloom seasons from May to August were analyzed using the monthly investigated data from 1999 to 2007. The effective accumulated water temperature (EAWT) in months from March to June was calculated with daily monitoring data from the Taihu Laboratory for Lake Ecosystem Research (TLLER). The concentrations of Chl-a and nutrients significantly decreased from Meiliang Bay to Central Lake. Annual averages of the total nitrogen (TN), total phosphorus (TP), and Chl-a concentrations, and EAWT generally increased in the nine years. In Meiliang Bay, the concentration of Chl-a was significantly correlated with EAWT, ammonia nitrogen (NH4+N), TN, the soluble reactive phosphorus (SRP), TP, and SS. In Central Lake, however, the concentration of Chl-a was only correlated with EAWT, TP, and SS. Multiple stepwise linear regression revealed that EAWT, dissolved total phosphorus (DTP), and TP explained 99.2% of the variation of Chl-a in Meiliang Bay, and that EAWT, NH4+-N, and TP explained 98.7% of the variation of Chl-a in Central Lake. Thus EAWT is an important factor influencing the annual change of phytoplankton biomass. Extreme climate change, such as extremely hot springs or cold springs, could cause very different bloom intensities in different years. It is also suggested that both nutrients and EAWT played important roles in the growth of phytoplankton in Taihu Lake. The climate factors and nutrients dually controlled the risk of harmful algal blooms in Taihu Lake. Cutting down phosphorus and nitrogen loadings from catchments should be a fundamental strategy to reduce the risk of blooms in Taihu Lake.展开更多
The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water qualit...The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51279194 and 41230744)the External Cooperation Program of the Chinese Academy of Sciences(Grant No.GJHZ1214)
文摘Long-term variations of phytoplankton chlorophyll-a (Chl-a), nutrients, and suspended solids (SS) in Taihu Lake, a large shallow freshwater lake in China, during algal bloom seasons from May to August were analyzed using the monthly investigated data from 1999 to 2007. The effective accumulated water temperature (EAWT) in months from March to June was calculated with daily monitoring data from the Taihu Laboratory for Lake Ecosystem Research (TLLER). The concentrations of Chl-a and nutrients significantly decreased from Meiliang Bay to Central Lake. Annual averages of the total nitrogen (TN), total phosphorus (TP), and Chl-a concentrations, and EAWT generally increased in the nine years. In Meiliang Bay, the concentration of Chl-a was significantly correlated with EAWT, ammonia nitrogen (NH4+N), TN, the soluble reactive phosphorus (SRP), TP, and SS. In Central Lake, however, the concentration of Chl-a was only correlated with EAWT, TP, and SS. Multiple stepwise linear regression revealed that EAWT, dissolved total phosphorus (DTP), and TP explained 99.2% of the variation of Chl-a in Meiliang Bay, and that EAWT, NH4+-N, and TP explained 98.7% of the variation of Chl-a in Central Lake. Thus EAWT is an important factor influencing the annual change of phytoplankton biomass. Extreme climate change, such as extremely hot springs or cold springs, could cause very different bloom intensities in different years. It is also suggested that both nutrients and EAWT played important roles in the growth of phytoplankton in Taihu Lake. The climate factors and nutrients dually controlled the risk of harmful algal blooms in Taihu Lake. Cutting down phosphorus and nitrogen loadings from catchments should be a fundamental strategy to reduce the risk of blooms in Taihu Lake.
基金supported by the National Water Pollution Control and Management Technology Major Project(No.2012ZX07101-010)the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2011FBZ07)
文摘The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.