Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata w...Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is f...The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.展开更多
Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specime...Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specimens with fve diferent water contents (i.e., 0%, 0.6%, 1.08%, 1.5%, 2.0%, and 2.3%). The failure mode, fragment size, and energy distribution characteristics of coal specimens were investigated. Experimental results show that strength, elastic strain energy, dissipated energy, brittleness index, as well as impact energy index decrease with increasing water content. Besides, the failure mode transitions gradually from splitting ejection to tensile-shear mixed failure mode as water content increases, and average fragment size shows positively related to water content. Moreover, scanning electron microscope tests results indicate that water in coal sample mainly causes the mineral softening and defects increase. Furthermore, a numerical model containing roadway excavation was established considering the water on coal burst prevention. Modelling results revealed that water injection can reduce degree of coal burst and ejection velocity of coal blocks, while it will raise up the depth of crack zone and surface displacement of roadway. Combined with laboratory tests and numerical results, the micro mechanism, energy mechanism, and engineering signifcance of water injection on coal burst prevention were fnally analyzed.展开更多
文摘Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.
文摘The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.
基金supported by the National Natural Science Foundation of China(Grant No:51974289)Natural Science Foundation of Anhui Province(Grant No:2108085ME155).
文摘Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specimens with fve diferent water contents (i.e., 0%, 0.6%, 1.08%, 1.5%, 2.0%, and 2.3%). The failure mode, fragment size, and energy distribution characteristics of coal specimens were investigated. Experimental results show that strength, elastic strain energy, dissipated energy, brittleness index, as well as impact energy index decrease with increasing water content. Besides, the failure mode transitions gradually from splitting ejection to tensile-shear mixed failure mode as water content increases, and average fragment size shows positively related to water content. Moreover, scanning electron microscope tests results indicate that water in coal sample mainly causes the mineral softening and defects increase. Furthermore, a numerical model containing roadway excavation was established considering the water on coal burst prevention. Modelling results revealed that water injection can reduce degree of coal burst and ejection velocity of coal blocks, while it will raise up the depth of crack zone and surface displacement of roadway. Combined with laboratory tests and numerical results, the micro mechanism, energy mechanism, and engineering signifcance of water injection on coal burst prevention were fnally analyzed.