期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Comparison of the water change characteristics between the formation and dissociation of methane hydrate and the freezing and thawing of ice in sand 被引量:2
1
作者 Peng Zhang Qingbai Wu Yingmei Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期205-210,共6页
关键词 methane hydrate ICE formation and dissociation process freezing and thawing process water change
下载PDF
Evaluating the weekly changes in terrestrial water storage estimated by two different inversion strategies in the Amazon River Basin
2
作者 Bo Zhong Xianpao Li +2 位作者 Qiong Li Jiangtao Tan Xianyun Dai 《Geodesy and Geodynamics》 EI CSCD 2023年第6期614-626,共13页
In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated the... In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated their abilities in retrieving terrestrial water storage(TWS)changes over the Amazon River Basin(ARB)from January 2003 to February 2013.The performance of the weekly GPD-SH and GPDmascon solutions was evaluated by comparing them with the weekly GFZ-SH solutions,Global Land Data Assimilation Systems(GLDAS)-NOAH hydrological model outputs,and monthly GFZ-SH,GPD-SH,and CSRmascon solutions in the spatio-temporal and spectral domains.The results demonstrate that the weekly GPD-SH and GPD-mascon present good consistency with the weekly GFZ-SH solutions and GLDAS-NOAH estimates in the spatio-temporal domains,but GPD-mascon presents stronger signal amplitudes and more spatial details.The comparison of the monthly average of weekly estimates and monthly solutions demonstrates that the weekly GPD-mascon and GFZ-SH with DDK1 filtering are close to the monthly CSRmascon and GFZ-SH solutions,respectively.However,the signal amplitudes of TWS changes from GPD-SH and GFZ-SH with 650 km Gaussian filtering are smaller than the monthly solutions,and the corresponding Root Mean Square Errors between the TWS change time series from the monthly average of weekly solutions and monthly estimates are 18.12 mm(GPD-mascon),18.81 mm(GFZ-SH-DDK1),24.93 mm(GPDSH-G650km),and 33.07 mm(GFZ-SH-G650km),respectively.Additionally,the TWS change time series derived from weekly solutions present more high-frequency time-varying information than monthly solutions.Furthermore,the 300 km Gaussian filtering can improve the signal amplitudes of TWS changes from the weekly GPD-SH solutions more than those with 650 km Gaussian filtering,but the corresponding noise level is higher.The weekly GPD-SH and GPD-mascon solutions can extend the application scopes of GRACE and provide good complements to the current GRACE monthly solutions. 展开更多
关键词 Terrestrial water storage change Amazon River Basin GRACE-based geopotential differences Weekly solutions Performance evaluation
下载PDF
Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau 被引量:1
3
作者 LI Ya-wei WANG Yu-zhe +1 位作者 XU Min KANG Shi-chang 《Journal of Mountain Science》 SCIE CSCD 2021年第7期1737-1747,共11页
Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) ch... Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) change and lake water storage(LWS) change in the total inner TP,it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP.In this study,we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976–2013,and LWS change by using the Shuttle Radar Topography Mission(SRTM).The results suggested that LWS had shrunk from 1976 to 1994,and then expanded quickly until 2013.LWS had a serious decrease by 13.6 Gt during 1976–1994,and then it increased quickly by 35.4 Gt during 1994–2013.We estimated TWS change,soil moisture change,and permafrost degradation based on the satellite data and related models during 2003–2013.The results indicated that their changing rates were 1.86 Gt/y,0.22 Gt/y,and –0.19 Gt/y,respectively.We also calculated the change of groundwater based on the mass balance with a decreasing trend of –0.054 Gt/y.The results suggested that the cause of TWS change was the increase of LWS.We analyzed the cause of lake change according to water balance,and found that the primary cause of lake expansion was the increasing precipitation(80.7%),followed by glacier meltwater(10.3%) and permafrost degradation(9%).The spatial difference between LWS change and TWS change should be studied further,which is important to understand the driving mechanism of water resources change. 展开更多
关键词 Lake expansion GRACE water storage change PRECIPITATION Glacier meltwater
下载PDF
The response of Caragana microphylla seedlings to water table changes in Horqin Sandy Land,China 被引量:1
4
作者 YunHua Ma TongHui Zhang +2 位作者 XinPing Liu Wei Mao XiangFei Yue 《Research in Cold and Arid Regions》 CSCD 2015年第1期88-93,共6页
This paper focuses on the growth response of Caragana microphylla seedlings to changes of artificially controlled water table in Horqin Sandy Land, China. Monitoring results of soil water content shows that soil moist... This paper focuses on the growth response of Caragana microphylla seedlings to changes of artificially controlled water table in Horqin Sandy Land, China. Monitoring results of soil water content shows that soil moisture is closely correlated to groundwater depths. Soil volumetric water increased rapidly when close to water sources and finally stabilized in a saturated state. The soil moisture trend of CK (control) increased gradually at 0-50 cm of soil depth then decreased to 4% below 50 cm soil depth. C. microphylla can adapt to different soil environments by changes in ecological and physiological characteristics. By comparing the ecological characteristics of C. microphylla seedlings at various water tables, we found that a shallow water table of 40 cm depth inhibited seedling groundwater depth of 120 em was more advantageous for plant growth because of weak ecological characteristics. A height and canopy growth of C. microphylla seedlings. During the first two years, the most suitable water depth for root biomass was 120 cm, and 180 cm for root length. The growth of vertical roots is positively correlated with groundwater depth, and root thickness is the determinate factor for root biomass while the fine root is the determinate factor for root length. A thick root would grow much more in a natural drought environment while access to ground water promotes the growth of fine roots. 展开更多
关键词 water table changes Caragana microphylla seedlings ecological characteristics Horqin Sandy Land
下载PDF
Spatial variability of glacial changes and their effects on water resources in the Chinese Tianshan Mountains during the last five decades 被引量:5
5
作者 WANG Puyu LI Zhongqin +3 位作者 HUAI Baojuan WANG Wenbin LI Huilin WANG Lin 《Journal of Arid Land》 SCIE CSCD 2015年第6期717-727,共11页
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu... Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff. 展开更多
关键词 Chinese Tianshan Mountains climate change glacial change regional differences water resources
下载PDF
Water storage changes in North America retrieved from GRACE gravity and GPS data 被引量:1
6
作者 Wang Hansheng Xiang Longwei +4 位作者 Jia Lulu Wu Patrick Steffen Holger Jiang Liming Shen Qiang 《Geodesy and Geodynamics》 2015年第4期267-273,共7页
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am... As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change. 展开更多
关键词 Canadian Prairies Great Lakes Ungava Peninsula water storage changes Gravity Recovery and Climate Experiment (GRACE) data Global Positioning System (GPS) data Glacial isostatic adjustment Separation approach
下载PDF
The influence of water level changes on sand bodies at river-dominated delta fronts:The Gubei Sag,Bohai Bay Basin
7
作者 Yang Zhang Zheng Shi +3 位作者 Ji Li Jun-Wei Wang Bao-Liang Yang Ji-Guo Jiang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期58-73,共16页
Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie ... Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body. 展开更多
关键词 water level changes River-dominated delta Delta front sandbodies Paleogene Shahejie Formation Gubei Sag of Bohai Bay Basin
下载PDF
Announcement of INTERNATIONAL WORKSHOP ON VULNERABILITY OF WATER RESOURCES TO ENVIRONMENTAL CHANGE
8
《Journal of Geographical Sciences》 SCIE CSCD 2002年第2期2-2,共1页
关键词 BAHC Announcement of INTERNATIONAL WORKSHOP ON VULNERABILITY OF water RESOURCES TO ENVIRONMENTAL change
下载PDF
Preparation and Characterization of CA-MA Eutectic/Silicon Dioxide Nanoscale Composite Phase Change Material from Water Glass via Sol-Gel Method
9
作者 孟多 ZHAO Kang +1 位作者 ZHAO Wei JIANG Guowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1048-1056,共9页
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ... This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material. 展开更多
关键词 fatty acid eutectic silicon dioxide nanoscale composite phase change material water glass sol-gel
下载PDF
Study on Rice Water Requirement of Liangping County under Climate Change Background
10
作者 Gao Fei Qi Junsheng +2 位作者 Wang Qinqin Zhang Ting Mou Xinli 《Meteorological and Environmental Research》 CAS 2014年第9期57-59,共3页
Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice... Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice growth period in Liangping County,and analyzed its climate tendency rate. Results showed that climate tendency rate of crop water requirement during growth period of rice was only- 0. 007 mm /10 a; climate tendency rate of rainfall was- 0. 06 mm /10 a,but interannual change was relatively larger; climate tendency rate of net irrigation water requirement was 0. 011 mm /10 a. In the years when drought occurred,such as 2006 and 2011,both rice water requirement and net irrigation water requirement in Liangping were greatly higher than means over the years. Therefore,we should focus on drought pre-warning and risk management improving drought disaster prevention in Liangping in the future. 展开更多
关键词 Liangping County Rice Crop water requirement Net irrigation water requirement Climate change China
下载PDF
Autonomous Changes in the Concentration of Water Vapor Drive Climate Change
11
作者 William A. Van Brunt 《Atmospheric and Climate Sciences》 2020年第4期443-508,共66页
When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate ch... When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation. 展开更多
关键词 Carbon Dioxide Climate change water Vapor Global Warming DRIVER Average Global Temperature change in Concentration water Vapor water Vapor Heating
下载PDF
Erratum to “Autonomous Changes in the Concentration of Water Vapor Drive Climate Change” [Atmospheric and Climate Sciences 10 (2020) 443-508]
12
作者 William Van Brunt 《Atmospheric and Climate Sciences》 2021年第3期535-546,共12页
<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><... <p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> average global temperature are not driven by changes in the concentration of carbon dioxide;</span></span></span></span> </p> <p> <span style="font-family:Verdana;">B. </span><span style="font-family:Verdana;">Instead, autonomous changes in the concentration of water vapor, </span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;">TPW, </span><span color:black;"=""><span style="font-family:Verdana;">drive changes in water vapor heating, thus, </span><span style="background:#C00000;font-family:Verdana;">changes in</span><span style="font-family:Verdana;"> the average global temperature, </span></span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;"><i>T</i></span><span style="font-family:Verdana;"><sub>Avg</sub></span><span color:black;"=""><span style="font-family:Verdana;">, </span><span style="background:#C00000;font-family:Verdana;">in deg. Celsius are calculated</span><span style="font-family:Verdana;"> in accordance with this principle,</span></span> </p> <p style="text-align:center;margin-left:10pt;"> <span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"></span><img src="Edit_6e770969-a7c9-4192-a6ad-03de906a4d65.bmp" alt="" /><br /> </span></span></span> </p> <p align="center" style="margin-left:10.0pt;text-align:center;"> <span><span><span style="font-family:;" "=""><span></span></span></span><span><span><span style="font-family:" color:black;"=""></span></span></span></span> </p> <p> <span><span><span style="font-family:" color:black;background:#c00000;"=""><span style="font-family:Verdana;">measured in kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>m</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>2</span></sup><span style="font-family:Verdana;">,</span></span></span></span><span><span><span style="font-family:" color:black;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the average accuracy of which is ±0.14%, when compared to the variable annual, 1880 </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> 2019, </span><span style="background:#C00000;font-family:Verdana;">average global </span><span style="font-family:Verdana;">temperature record;</span></span></span></span> </p> 展开更多
关键词 Carbon Dioxide Climate change water Vapor Global Warming DRIVER Average Global Temperature change in Concentration water Vapor water Vapor Heating
下载PDF
The prevention and cure of Karst water by the grounding technique to change mining floor
13
《Global Geology》 1998年第1期76-76,共1页
关键词 The prevention and cure of Karst water by the grounding technique to change mining floor
下载PDF
Growth of the Sayram Lake and retreat of its water-supplying glaciers in the Tianshan Mountains from 1972 to 2011 被引量:6
14
作者 CHENG Weiming WANG Nan +2 位作者 ZHAO Shangmin FANG Yue ZHAO Min 《Journal of Arid Land》 SCIE CSCD 2016年第1期13-22,共10页
Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water r... Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km<sup>2</sup> and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km<sup>2</sup>. Our study has indicative significance to the research of regional climate change. 展开更多
关键词 Sayram Lake inland lake areal variation water level change glacial retreat
下载PDF
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data 被引量:8
15
作者 Min XU BaiSheng YE +2 位作者 QiuDong ZHAO ShiQing ZHANG Jiang WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期384-395,共12页
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents... Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff. 展开更多
关键词 actual evaporation GRACE satellite data water storage change water balance equation source region of the Yellow River
下载PDF
Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert,China 被引量:7
16
作者 GONG Yanping WANG Xusheng +3 位作者 HU B Xiao ZHOU Yangxiao HAO Chunbo WAN Li 《Journal of Arid Land》 SCIE CSCD 2016年第5期694-706,共13页
Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed sa... Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD. 展开更多
关键词 arid region groundwater-fed lake spring water level change salinity
下载PDF
Effects of mining-induced earthquakes on water table in deep wells
17
作者 车用太 马志峰 +3 位作者 王尢培 鱼金子 黄积刚 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期111-118,共8页
Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of co... Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of coseismic effect of water table in deep well in this paper. We have found precursory phenomena of water table in deep well before mining-induced earthquake. Here we discuss the physical mechanism of coseismic effect of mining--induced earthquake on water table in deep well. 展开更多
关键词 mining-induced earthquake deep ground water water level change earthquake precursor
下载PDF
Chang Gao Brand Water Purifier & Mineralizer
18
《China's Foreign Trade》 1994年第10期39-39,共1页
People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running wate... People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running water, and therefore it is good for the digestion, promotion of metabolism, prevention of cardiovascular diseases and osteoporosis, and promotion of Children growth. It has become a favourite drink for many people. 展开更多
关键词 THAN MORE Chang Gao Brand water Purifier MINERALIZER
下载PDF
A new theoretical solution of the effect of atmospheric pressure on water level
19
作者 赵鹏君 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第2期317-323,共7页
Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the au... Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future. 展开更多
关键词 water level change seepage dynamic response
下载PDF
The Influence of Weather and Climate Variability on Groundwater Quality in Zanzibar
20
作者 Leluu Ramadhan Mohammed Kombo Hamad Kai +2 位作者 Agnes Laurence Kijazi Said Suleiman Bakar Sara Abdalla Khamis 《Atmospheric and Climate Sciences》 CAS 2022年第4期613-634,共22页
Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate va... Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate variability, and changes on the quality of groundwater resources in Zanzibar. The study used the climate datasets including rainfall (RF), Maximum and Minimum Temperature (T<sub>max</sub> and T<sub>min</sub>), the records acquired from Tanzania Meteorological Authority (TMA) Zanzibar office for 30 (1989-2019) and 10 (2010-2019) years periods. Also, the Zanzibar Water Authority (ZAWA) monthly records of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Ground Water Temperature (GWT) were used. Interpolation techniques were used for controlling outliers and missing datasets. Indeed, correlation, trend, and time series analyses were used to show the relationship between climate and water quality parameters. However, simple statistical analyses including mean, percentage changes, and contributions to the annual and seasonal mean were calculated. Moreover, t and paired t-tests were used to show the significant changes in the mean of the variables for two defined periods of 2011-2015 and 2016-2020 at p ≤ 0.05. Results revealed that seasonal variability of groundwater quality from March to May (MAM) has shown a significant change in trends ranging from 0.1 to 2.8 mm/L/yr, 0.1 to 2.8 μS/cm/yr, and 0.1 to 2.0&#8451;/yr for TDS, EC, and GWT, respectively. The changes in climate parameters were 0.1 to 2.4 mm/yr, 0.2 to 1.3&#8451;/yr and 0.1 to 2.5&#8451;/yr in RF, T<sub>max</sub>, and T<sub>min</sub>, respectively. From October to December (OND) changes in groundwater parameters ranged from 0.2 to 2.5 mm/L/yr 0.1 to 2.9 μS/cm/yr, and 0.1 to 2.1&#8451;/yr for TDS, EC, and GWT, whereas RF, T<sub>max</sub>, and T<sub>min</sub> changed from 0.3 to 1.8 mm/yr, 0.2 to 1.9&#8451;/yr and 0.2 to 2.0&#8451;/yr, respectively. Moreover, the study has shown strong correlations between climate and water quality parameters in MAM and OND. Besides, the paired correlation has shown significant changes in all parameters except the rainfall. Conclusively, the study has shown a strong influence of climate variability on the quality of groundwater in Zanzibar, and calls for more studies to extrapolate these results throughout Tanzania. 展开更多
关键词 Quality of Groundwater Parameters Climate Variability Mean changes of Climate and water Quality Parameters
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部