期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Parameterization of Longwave Optical Properties for Water Clouds 被引量:1
1
作者 汪宏七 赵高祥 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第1期25-34,共10页
Based on relationships between cloud microphysical and optical properties, three different parameterization schemes for narrow and broad band optical properties in longwave region for water clouds have been presented.... Based on relationships between cloud microphysical and optical properties, three different parameterization schemes for narrow and broad band optical properties in longwave region for water clouds have been presented. The effects of different parameterization schemes and different number of broad bands used on cloud radiative properties have been investigated. The effect of scattering role of cloud drops on longwave radiation fluxes and cooling rates in cloudy atmospheres has also been analyzed. 展开更多
关键词 water cloud Long wave radiation Optical property PARAMETERIZATION Climate model
下载PDF
Effects of Doubled Carbon Dioxide on Rainfall Responses to Radiative Processes of Water Clouds 被引量:1
2
作者 李小凡 李婷婷 楼凌云 《Journal of Meteorological Research》 SCIE 2014年第6期1114-1126,共13页
The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard... The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed.In the presence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds.Doubled carbon dioxide leads to the reduction in tropical rainfall,caused by the removal of radiative effects of water clouds through the suppressed infrared cooling.In the absence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds.The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling,which is insensitive to the change in carbon dioxide. 展开更多
关键词 doubled carbon dioxide rainfall response radiative effects water and ice clouds cloud-resolving model simulation
原文传递
Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study
3
作者 高守亭 李小凡 周玉淑 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期270-277,共8页
The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibriu... The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds. 展开更多
关键词 effects of water and ice clouds cloud budget net condensation hydrometeor change/convergence
下载PDF
Ecological Significance of Developing Cloud Water Resource in Liaoning Province 被引量:1
4
作者 王华 班显秀 +1 位作者 张玉书 张淑杰 《Meteorological and Environmental Research》 CAS 2010年第8期80-83,共4页
The potential evapotranspiration of main ecosystems and its relationship with precipitation during the same period were studied,the results showed that precipitation did not meet the water requirement of main ecosyste... The potential evapotranspiration of main ecosystems and its relationship with precipitation during the same period were studied,the results showed that precipitation did not meet the water requirement of main ecosystems influencing ecosystem construction.Based on the data from Liaoning Provincial Department of Water Resources and Liaoning Meteorological Archives,the characteristics of water inflow and each component were analyzed,and it showed that the imbalance between supply and demand of water resource in main ecosystems was improved by means of developing cloud water resource to increase atmospheric precipitation. 展开更多
关键词 ECOSYSTEM Potential evapotranspiration Artificial precipitation enhancement Cloud water resource China
下载PDF
Sensitivity of the Grid-point Atmospheric Model of IAP LASG(GAMILI.I.0)Climate Simulations to Cloud Droplet Effective Radius and Liquid Water Path 被引量:10
5
作者 李立娟 王斌 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期529-540,共12页
This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest ve... This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations. 展开更多
关键词 GAMIL energy budget cloud droplet effective radius cloud liquid water path
下载PDF
Climatic Features of Cloud Water Distribution and Cycle over China 被引量:3
6
作者 李兴宇 郭学良 朱江 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期437-446,共10页
Analyses of cloud water path (CWP) data over China available from the International Satellite Cloud Climatology Project (ISCCP) are performed for the period 1984-2004. Combined with GPCP precipitation data, cloud ... Analyses of cloud water path (CWP) data over China available from the International Satellite Cloud Climatology Project (ISCCP) are performed for the period 1984-2004. Combined with GPCP precipitation data, cloud water cycle index (CWCI) is also calculated. The climatic distributions of CWP are found to be dependent on large-scale circulation, topographical features, water vapor transport and similar distribution features which are found in CWCI except in the Sichuan Basin. Influenced by the Asia monsoon, CWP over China exhibits very large seasonal variations in different regions. The seasonal cycles of CWCI in different regions are consistent and the largest CWCI occurs in July. The long-term trends of CWP and CWCI are investigated, too. Increasing trends of CWP are found during the period with the largest increase found in winter. The decreasing trends of CWCI dominate most regions of China. The differences in long-term trends between CWP and CWCI suggest that CWP only can influence the variation of CWCI to a certain extent and that other factors need to be involved in cloud water cycle researches. This phenomenon reveals the complexity of the hydrological cycle related to cloud water. 展开更多
关键词 ISCCP cloud water path cloud water cycle climatic features
下载PDF
An assessment of Arctic cloud water paths in atmospheric reanalyses 被引量:1
7
作者 Mingyi Gu Zhaomin Wang +1 位作者 Jianfen Wei Xiaoyong Yu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期46-57,共12页
The role of Arctic clouds in the recent rapid Arctic warming has attracted much attention.However,Arctic cloud water paths(CWPs)from reanalysis datasets have not been well evaluated.This study evaluated the CWPs as we... The role of Arctic clouds in the recent rapid Arctic warming has attracted much attention.However,Arctic cloud water paths(CWPs)from reanalysis datasets have not been well evaluated.This study evaluated the CWPs as well as LWPs(cloud liquid water paths)and IWPs(cloud ice water paths)from five reanalysis datasets(MERRA-2,MERRA,ERA-Interim,JRA-55,and ERA5)against the COSP(Cloud Feedback Model Intercomparison Project Observations Simulator Package)output for MODIS from the MERRA-2 CSP(COSP satellite simulator)collection(defined as M2Modis in short).Averaged over 1980-2015 and over the Arctic region(north of 60°N),the mean CWPs of these five datasets range from 49.5 g/m^(2)(MERRA)to 82.7 g/m^(2)(ERA-Interim),much smaller than that from M2Modis(140.0 g/m^(2)).However,the spatial distributions of CWPs,show similar patterns among these reanalyses,with relatively small values over Greenland and large values over the North Atlantic.Consistent with M2Modis,these reanalyses show larger LWPs than IWPs,except for ERA-Interim.However,MERRA-2 and MERRA underestimate the ratio of IWPs to CWPs over the entire Arctic,while ERA-Interim and JRA-55 overestimate this ratio.ERA5 shows the best performance in terms of the ratio of IWPs to CWPs.All datasets exhibit larger CWPs and LWPs in summer than in winter.For M2Modis,IWPs hold seasonal variation similar with LWPs over the land but opposite over the ocean.Following the Arctic warming,the trends in LWPs and IWPs during 1980~2015 show that LWPs increase and IWPs decrease across all datasets,although not statistically significant.Correlation analysis suggests that all datasets have similar interannual variability.The study further found that the inclusion of re-evaporation processes increases the humidity in the atmosphere over the land and that a more realistic liquid/ice phase can be obtained by independently treating the liquid and ice water contents. 展开更多
关键词 ARCTIC clouds cloud water paths(CWPs) reanalysis evaluation
下载PDF
EnKF Assimilation of Satellite-retrieved Cloud Water Path to Improve Tropical Cyclone Rainfall Forecast 被引量:1
8
作者 GAO Xiao-yu LIN Yan-luan YUE Jian 《Journal of Tropical Meteorology》 SCIE 2021年第3期201-217,共17页
Tropical cyclone(TC) rainfall forecast has remained a challenge. To create initial conditions with high quality for simulation, the present study implemented a data assimilation scheme based on the EnKF method to inge... Tropical cyclone(TC) rainfall forecast has remained a challenge. To create initial conditions with high quality for simulation, the present study implemented a data assimilation scheme based on the EnKF method to ingest the satellite-retrieved cloud water path(C_(w)) and tested it in WRF. The scheme uses the vertical integration of forecasted cloud water content to transform control variables to the observation space, and creates the correlations between C_(w) and control variables in the flow-dependent background error covariance based on all the ensemble members, so that the observed cloud information can affect the background temperature and humidity. For two typhoons in 2018(Yagi and Rumiba), assimilating C_(w) significantly increases the simulated rainfalls and TC intensities. In terms of the average equitable threat score of daily moderate to heavy rainfall(5-120 mm), the improvements are over 130%, and the dry biases are cut by about 30%. Such improvements are traced down to the fact that C_(w) assimilation increases the moisture content, especially that further away from the TC center, which provides more precipitable water for the rainfall,strengthens the TC and broadens the TC size via latent heat release and internal wind field adjustment. 展开更多
关键词 tropical cyclone data assimilation ENKF cloud water path
下载PDF
Magnitude and Trends of High-elevation Cloud Water Pollutant Concentrations and Modeled Deposition Fluxes
9
作者 Selma Isil Thomas Lavery +2 位作者 Kristi Gebhart Christopher Rogers Carol Armbrust Wanta 《Journal of Environmental Science and Engineering(B)》 2017年第3期127-143,共17页
Cloud water samples, LWC (Liquid Water Content) and meteorological data were collected at the Clingmans Dome, Tennessee, high-elevation site in Great Smoky Mountains National Park during the warm season from 1994 th... Cloud water samples, LWC (Liquid Water Content) and meteorological data were collected at the Clingmans Dome, Tennessee, high-elevation site in Great Smoky Mountains National Park during the warm season from 1994 through 2011. This paper presents results from 2000 through the conclusion of the study in 2011. Samples were analyzed for SO42", NO3, NH4+ and H+. These measurements were supplemented by measurements of ambient air and precipitation concentrations to estimate dry and wet deposition. Cloud water concentrations, LWC, cloud frequency, various meteorological measurements and information on nearby forest canopy were used to model cloud water deposition to gauge trends in deposition. Total deposition was calculated as the sum of cloud, dry and wet deposition estimates. Concentrations and deposition fluxes declined over the study period. The decreases in cloud water SO42" and NO3 concentrations were 40 percent and 26 percent, respectively. Three-year mean 5042 and NO3 deposition rates decreased by 71 percent and 70 percent, respectively. Trends in concentrations and depositions were comparable with trends in SO2 and NOx emissions from Tennessee Valley Authority power plants and aggregated emission reductions from electric generating units in adjacent states. Back trajectories were simulated with the HYSPLIT model and aggregated over cloud sampling periods from 2000 through 2007 and 2009 through 2011. Trajectories during periods with high H+ concentrations traveled over local EGU (Electric Generating Unit) emission sources in Tennessee and Kentucky to the Ohio River Valley, Alabama and Georgia with the conclusion that these source regions contributed to acidic cloud water deposition at Clingmans Dome. This work was supported by U.S. Environmental Protection Agency and the Tennessee Valley Authority with infrastructure support provided by the National Park Service. 展开更多
关键词 Cloud water acid deposition liquid water content EMISSIONS back trajectory high elevation.
下载PDF
Effects of sea surface temperature,cloud radiative and microphysical processes,and diurnal variations on rainfall in equilibrium cloud-resolving model simulations 被引量:1
10
作者 蒋哲 李小凡 +1 位作者 周玉淑 高守亭 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期308-315,共8页
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin... The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. 展开更多
关键词 rain rate sea surface temperature radiative and microphysical effects of ice and water clouds diurnal variation
下载PDF
Assessing the Precipitation Enhancement Development Potential in 2013 Using the CWRPEP Method in Liaoning Province
11
作者 赵姝慧 刘旸 +3 位作者 袁健 房彬 秦鑫 李炎喆 《Agricultural Science & Technology》 CAS 2015年第6期1247-1250,1305,共5页
Objective] The research aimed to assess the development potential of ar-tificial precipitation in Liaoning Province. [Method] The evaluation method of cloud water resource for precipitation enhancement potential was u... Objective] The research aimed to assess the development potential of ar-tificial precipitation in Liaoning Province. [Method] The evaluation method of cloud water resource for precipitation enhancement potential was used. [Result] The annu-al total precipitation enhancement potential by cloud water resource in the air in 2013 was 1.23 bil ion tons in Liaoning, and cloud water resource for precipitation enhancement was 1.63 bil ion tons. [Conclusion] The spatial and temporal distribution for development potential of cloud water resource in the air was very uneven in Liaoning Province, and the mainly period was during spring and autumn. It wil be received obvious effect in the two seasons. In order to compensate for the restric-tion of the operational capability lack on cloud water resource development, we need to continue to improve the operation capacity building. 展开更多
关键词 Cloud water resource Precipitation enhancement POTENTIAL
下载PDF
Analysis on the Macro and Micro Physical Characteristics of Stratiform Cloud in Henan
12
作者 李铁林 尹彬 +1 位作者 郭献林 邵振平 《Meteorological and Environmental Research》 CAS 2010年第10期96-100,共5页
By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and mic... By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and micro physical structure characteristics of cloud were analyzed.The results showed that the average diameter of small cloud drop which was measured by FSSP-100 in the warm layer of cloud was mainly during 5-12 μm,and the average value was 7.33 μm.The biggest diameter of small cloud drop changed during 14-47 μm,and the average value was 27.80 μm.The total number concentration scope of small cloud drop was during 47.73-352.00 drop/cm3,and the average value was 160 drop/cm3.In the cold layer of cloud,the biggest diameter of small cloud particle(included the cloud droplet and the ice crystals)which was measured by FSSP-100 was 24.8 μm.The total number concentration scope of small cloud particle was during 0.899-641.000 drop/cm3,and the average value was 297 drop/cm3.The airborne King heat line liquid water content instrument observed that the super-cooling liquid water existed in the cloud.The super-cooling cloud water content changed during 0.02-0.20 g/m3,and the average value was 0.093 g/m3.The biggest value which was 0.202 g/m3 appeared in 4 368 m height(the temperature was-8.5 ℃).The particle spectrum type in the cloud was mainly the negative exponent type and the single peak type. 展开更多
关键词 Microphysical characteristic of cloud Number concentration Super-cooling cloud water content China
下载PDF
Properties of Cloud and Precipitation over the Tibetan Plateau 被引量:7
13
作者 WANG Chenghai SHI Hongxia +2 位作者 HU Haolin WANG Yi XI Baike 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1504-1516,共13页
The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitati... The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF (empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content (CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TE Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TE The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions. 展开更多
关键词 cloud liquid water content cloud ice water content precipitable liquid water Tibetan Plateau
下载PDF
Influence of Vegetation Cover on the Oh Soil Moisture Retrieval Model: A Case Study of the Malinda Wetland, Tanzania 被引量:1
14
作者 Fridah Kirimi David N. Kuria +4 位作者 Frank Thonfeld Esther Amler Kenneth Mubea Salome Misana Gunter Menz 《Advances in Remote Sensing》 2016年第1期28-42,共15页
Soil moisture is an important parameter that drives agriculture, climate and hydrological systems. In addition, retrieval of soil moisture is important in the analysis as well as its influence on these systems. Radar ... Soil moisture is an important parameter that drives agriculture, climate and hydrological systems. In addition, retrieval of soil moisture is important in the analysis as well as its influence on these systems. Radar imagery is best suited for this retrieval due to its all-weather capability and independence from solar irradiation. Soil moisture retrieval was done for the Malinda Wetland, Tanzania, during two time periods, March and September 2013. The aim of this paper was to analyze soil moisture retrieval performance when vegetation contribution is taken into account. Backscatter values were obtained from TerraSAR-X Spotlight mode imagery taken in March and September 2013. The backscatter values recorded by SAR imagery are influenced by vegetation, soil roughness and soil moisture. Thus, in order to obtain the backscatter due to soil moisture, the roughness and vegetation contribution are determined and decoupled from total backscatter. The roughness parameters were obtained from a Digital Surface Model (DSM) from Unmanned Aerial Vehicle (UAV) photographs whereas the vegetation parameter was obtained by inverting the Water Cloud Model (WCM). Lastly, soil moisture was retrieved using the Oh Model. The coefficient of correlation between the observed and retrieved was 0.39 for the month of March and 0.65 in the month of August. When the vegetation contribution was considered, the r2 for March was 0.64 and that in August was 0.74. The results revealed that accounting for vegetation improved soil moisture retrieval. 展开更多
关键词 Surface Soil Moisture Oh Model water Cloud Model WETLAND TERRASAR-X
下载PDF
Characteristics of Cloud Water Resource and Precipitation Efficiency of Hydrometeors over Northwest China 被引量:1
15
作者 Zhanyu YAO Lin AN +4 位作者 Pei ZHANG Liangshu GAO Shuo JIA Weijian WANG Wenhui ZHAO 《Journal of Meteorological Research》 SCIE CSCD 2023年第3期353-369,共17页
Understanding the characteristics of cloud water resource(CWR)and precipitation efficiency of hydrometeors(PEh)is imperative for the application of CWR in Northwest China.The atmospheric precipitable water(PW)in all f... Understanding the characteristics of cloud water resource(CWR)and precipitation efficiency of hydrometeors(PEh)is imperative for the application of CWR in Northwest China.The atmospheric precipitable water(PW)in all four seasons and clouds and PEh in summer were studied with ERA-5 and CloudSat data in this region.The results show that topography,especially in the Tibetan Plateau,exerts significant impacts on the precipitation and PW in summer,since large amounts of clouds are distributed along the mountain ranges.The study region is divided into four typical areas:the monsoon area in eastern Northwest China(NWE),the Qilian Mountains area(QM),the Tianshan Mountains area(TM),and the Source of Three Rivers area(STR).Over the four areas,cloud top height(6.3 km)and cloud base height(3.3 km)over NWE are higher,and precipitating clouds are thicker(7 km)in the single-layer clouds.Liquid water content decreases with increasing altitude,while the ice water content first increases and then decreases.Liquid water path is higher over NWE(0.11 kg m^(−2))than over TM and STR(0.05 kg m^(−2)),and the ice water path is mainly concentrated within the range of 0.025–0.055 kg m^(−2).The PEh values are distributed unevenly and affected evidently by the terrain.Although the PEh values in the four typical areas(0.3–0.6)are higher than those in other regions,the CWR is relatively abundant and has a higher exploitation potential.Therefore,it is well-founded to exploit CWR for alleviating water shortages in these areas of Northwest China in summer. 展开更多
关键词 cloud water resource(CWR) precipitation efficiency of hydrometeors(PEh) precipitable water(PW) CLOUD Northwest China
原文传递
Quantifying the Cloud Water Resource:Basic Concepts and Characteristics 被引量:11
16
作者 Yuquan ZHOU Miao CAI +2 位作者 Chao TAN Jietai MAO Zhijin HU 《Journal of Meteorological Research》 SCIE CSCD 2020年第6期1242-1255,共14页
The water in the air is composed of water vapor and hydrometeors,which are inseparable in the global atmosphere.Precipitation basically comes from hydrometeors instead of directly from water vapor,but hydrometeors are... The water in the air is composed of water vapor and hydrometeors,which are inseparable in the global atmosphere.Precipitation basically comes from hydrometeors instead of directly from water vapor,but hydrometeors are rarely focused on in previous studies.When assessing the maximum potential precipitation,it is necessary to quantify the total amount of hydrometeors present in the air within an area for a certain period of time.Those hydrometeors that have not participated in precipitation formation in the surface,suspending in the atmosphere to be exploited,are defined as the cloud water resource(CWR).Based on the water budget equations,we defined 16 terms(including 12 independent ones)respectively related to the hydrometeors,water vapor,and total water substance in the atmosphere,and 12 characteristic variables related to precipitation and CWR such as precipitation efficiency(PE)and renewal time(RT).Correspondingly,the CWR contributors are grouped into state terms,advection terms,and source/sink terms.Two methods are developed to quantify the CWR(details of which are presented in the companion paper)with satellite observations,atmospheric reanalysis data,precipitation products,and cloud resolving models.The CWR and related variables over North China in April and August 2017 are thus derived.The results show that CWR has the same order of magnitude as surface precipitation(Ps).The hydrometers converted from water vapor(Cvh)during the condensation process is the primary source of precipitation.It is highly correlated with Ps and contributes the most to the CWR over a large region.The state variables and advection terms of hydrometeors are two orders of magnitude lower than the corresponding terms of water vapor.The atmospheric hydrometeors can lead to higher PE than water vapor(several tens of percent versus a few percent),with a shorter RT(only a few hours versus several days).For daily CWR,the state terms are important,but for monthly and longer-time mean CWR,the source/sink terms(i.e.,cloud microphysical processes)contribute the largest;meanwhile,the advection terms contribute less for larger study areas. 展开更多
关键词 cloud water resource(CWR) atmospheric hydrometeors precipitation efficiency renewal time quantification method
原文传递
Quantifying the Cloud Water Resource:Methods Based on Observational Diagnosis and Cloud Model Simulation 被引量:7
17
作者 Miao CAI Yuquan ZHOU +6 位作者 Jianzhao LIU Chao TAN Yahui TANG Qianrong MA Qi LI Jietai MAO Zhijin HU 《Journal of Meteorological Research》 SCIE CSCD 2020年第6期1256-1270,共15页
Based on the concepts of cloud water resource(CWR)and related variables proposed in the first part of this study,this paper provides details of two methods to quantify the CWR.One is diagnostic quantification(CWR-DQ)b... Based on the concepts of cloud water resource(CWR)and related variables proposed in the first part of this study,this paper provides details of two methods to quantify the CWR.One is diagnostic quantification(CWR-DQ)based on satellite observations,precipitation products,and atmospheric reanalysis data;and the other is numerical quantification(CWR-NQ)based on a cloud resolving model developed at the Chinese Academy of Meteorological Sciences(CAMS).The two methods are applied to quantify the CWR in April and August 2017 over North China,and the results are evaluated against all available observations.Main results are as follows.(1)For the CWR-DQ approach,reference cloud profiles are firstly derived based on the Cloud Sat/CALIPSO joint satellite observations for 2007–2010.The NCEP/NCAR reanalysis data in 2000–2017 are then employed to produce three-dimensional cloud fields.The budget/balance equations of atmospheric water substance are lastly used,together with precipitation observations,to retrieve CWR and related variables.It is found that the distribution and vertical structure of clouds obtained by the diagnostic method are consistent with observations.(2)For the CWR-NQ approach,it assumes that the cloud resolving model is able to describe the cloud microphysical processes completely and precisely,from which four-dimensional distributions of atmospheric water vapor,hydrometeors,and wind fields can be obtained.The data are then employed to quantify the CWR and related terms/quantities.After one-month continuous integration,the mass of atmospheric water substance becomes conserved,and the tempospatial distributions of water vapor,hydrometeors/cloud water,and precipitation are consistent with observations.(3)Diagnostic values of the difference in the transition between hydrometeors and water vapor(Cvh-Chv)and the surface evaporation(Es)are well consistent with their numerical values.(4)Correlation and bias analyses show that the diagnostic CWR contributors are well correlated with observations,and match their numerical counterparts as well,indicating that the CWR-NQ and CWR-DQ methods are reasonable.(5)Underestimation of water vapor converted from hydrometeors(Chv)is a shortcoming of the CWR-DQ method,which may be rectified by numerical quantification results or by use of advanced observations on higher spatiotemporal resolutions. 展开更多
关键词 cloud water resource(CWR) atmospheric hydrometeors precipitation efficiency quantification method observation diagnosis cloud model simulation
原文传递
Effect of water injection on the cavitation control:experiments on a NACA66(MOD)hydrofoil 被引量:5
18
作者 W.Wang T.Tang +4 位作者 Q.D.Zhang X.F.Wang Z.Y.An T.H.Tong Z.J.Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第5期999-1017,I0001,共20页
The objective of this work is to investigate experimentally controlling cavitating flow over NACA66(MOD)hydrofoils by means of an active water injection along its suction surface.The continuous water vertically jets o... The objective of this work is to investigate experimentally controlling cavitating flow over NACA66(MOD)hydrofoils by means of an active water injection along its suction surface.The continuous water vertically jets out of the chamber inside the hydrofoil through evenly distributed surface holes.Experiments were carried out in cavitation water tunnel.using high-speed visualization technology and the particle image velocimetry(PIV)system to study the sheetlcloud cavity behaviors.We studied the effects of this active control on cavity evolution with four kinds of jet flow at two different jet positions.We analyzed the effect of water injection on the mechanism of the cavitating flow control.The results were all compared with that for the original hydrofoil without jet and show that the active jet can effectively suppress the sheet/cloud cavitation characterized by shrinking the attached cavity size and breaking the large-scaled cloud sheding vortex cavity into small-scaled ones.The optimum effectiveness of cavitation suppression is affected by the jet flow rates and jet positions.The water injection at flow rate coefficient 0.0245 with the jet position of 0.45C reduces the maximum sheet cavity length by 79.4%and the cavity shedding is diminished completely,which gives the most superior effect of sheet cavitation suppression.The jet blocks the re-entrant jet moving upstream and weakens the power of re-entrant jet and thus restrains the cavitation development effectively and stabilizes the flow field. 展开更多
关键词 Cavitation active control Sheet/cloud cavitation.water injection Re-entrant jet
原文传递
Diagnostic Quantification of the Cloud Water Resource in China during 2000–2019 被引量:2
19
作者 Miao CAI Yuquan ZHOU +4 位作者 Jianzhao LIU Yahui TANG Chao TAN Junjie ZHAO Jianjun OU 《Journal of Meteorological Research》 SCIE CSCD 2022年第2期292-310,共19页
By using the diagnostic quantification method for cloud water resource(CWR),the three-dimensional(3D)cloud fields of 1°×1°resolution during 2000-2019 in China are firstly obtained based on the NCEP rean... By using the diagnostic quantification method for cloud water resource(CWR),the three-dimensional(3D)cloud fields of 1°×1°resolution during 2000-2019 in China are firstly obtained based on the NCEP reanalysis data and related satellite data.Then,combined with the Global Precipitation Climatology Project(GPCP)products,a 1°×1°gridded CWR dataset of China in recent 20 years is established.On this basis,the monthly and annual CWR and related variables in China and its six weather modification operation sub-regions are obtained,and the CWR characteristics in different regions are analyzed finally.The results show that in the past 20 years,the annual total amount of atmospheric hydrometeors(GM_(h))and water vapor(GM_(v))in the Chinese mainland are about 838.1 and 3835.9 mm,respectively.After deducting the annual mean precipitation of China(P_(s),661.7 mm),the annual CWR is about 176.4 mm.Among the six sub-regions,the southeast region has the largest amount of cloud condensation(C_(vh))and precipitation,leading to the largest GM_(h) and CWR there.In contrast,the annual P_(s),GM_(h),and CWR are all the least in the northwest region.Furthermore,the monthly and interannual variation trends of P_(s),C_(vh),and GM_(h) in different regions are identical,and the evolution characteristics of CWR are also consistent with the hydrometeor inflow(Q_(hi)).For the north,northwest,and northeast regions,in spring and autumn the precipitation efficiency of hydrometeors(PEh)is not high(20%-60%),the renewal time of hydrometeors(RT_(h))is relatively long(5-25 h),and GM_(h) is relatively high.Therefore,there is great potential for the development of CWR through artificial precipitation enhancement(APE).For the central region,spring,autumn,and winter are suitable seasons for CWR development.For the southeast and southwest regions,P_(s) and PE_(h) in summer are so high that the development of CWR should be avoided.For different spatial scales,there are significant differences in the characteristics of CWR. 展开更多
关键词 cloud water resource(CWR) diagnostic quantification weather modification regions monthly and annual variation development characteristics
原文传递
Retrieval of Oceanic Total Precipitable Water Vapor and Cloud Liquid Water from Fengyun-3D Microwave Sounding Instruments 被引量:2
20
作者 Yang HAN Jun YANG +1 位作者 Hao HU Peiming DONG 《Journal of Meteorological Research》 SCIE CSCD 2021年第2期371-383,共13页
Fengyun-3 D(FY-3 D) satellite is the latest polar-orbiting meteorological satellite launched by China and carries 10 instruments onboard. Its microwave temperature sounder(MWTS) and microwave humidity sounder(MWHS) ca... Fengyun-3 D(FY-3 D) satellite is the latest polar-orbiting meteorological satellite launched by China and carries 10 instruments onboard. Its microwave temperature sounder(MWTS) and microwave humidity sounder(MWHS) can acquire a total of 28 channels of brightness temperatures, providing rich information for profiling atmospheric temperature and moisture. However, due to a lack of two important frequencies at 23.8 and 31.4 GHz, it is difficult to retrieve the total precipitable water vapor(TPW) and cloud liquid water path(CLW) from FY-3 D microwave sounder data as commonly done for other microwave sounding instruments. Using the channel similarity between Suomi National Polar-orbiting Partnership(NPP) advanced technology microwave sounder(ATMS) and FY-3 D microwave sounding instruments, a machine learning(ML) technique is used to generate the two missing low-frequency channels of MWTS and MWHS. Then, a new dataset named as combined microwave sounder(CMWS) is obtained,which has the same channel setting as ATMS but the spatial resolution is consistent with MWTS. A statistical inversion method is adopted to retrieve TPW and CLW over oceans from the FY-3 D CMWS. The intercomparison between different satellites shows that the inversion products of FY-3 D CMWS and Suomi NPP ATMS have good consistency in magnitude and distribution. The correlation coefficients of retrieved TPW and CLW between CMWS and ATMS can reach 0.95 and 0.85, respectively. 展开更多
关键词 precipitable water vapor cloud liquid water Fengyun-3D(FY-3D) MICROWAVE machine learning(ML)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部