期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Spatial variability of leaf wetness under different soil water conditions in rainfed jujube (Ziziphus jujuba Mill.) in the loess hilly region, China 被引量:1
1
作者 GAO Zhiyong WANG Xing 《Journal of Arid Land》 SCIE CSCD 2022年第1期70-81,共12页
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t... Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube. 展开更多
关键词 canopy position leaf wetness rainfed jujube soil water condition loess hilly region
下载PDF
Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments 被引量:35
2
作者 Yihui Pang Guofa Wang Ziwei Ding 《International Journal of Coal Science & Technology》 EI CAS 2014年第4期428-433,共6页
In order to study the mechanism of confined water inrush from coal seam floor,the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiment... In order to study the mechanism of confined water inrush from coal seam floor,the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments,theoretical analysis and mechanical model calculation.The crack extension rule and the ultimate destruction form of the rock specimens were obtained.The mechanism of water inrush was explained reasonably from mechanical point of view.The practical criterion of water inrush was put forward.The results show that the rock permeability "mutation" phenomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale.The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress.The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack.The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack.With the two conditions satisfied at the same time,the floor water inrush accident will occur. 展开更多
关键词 Triaxial permeability experiment Floor water innush model Floor water inrush mechanism Necessary and sufficient conditions of water inrush
下载PDF
Coupled hydro-mechanical effect of a fractured rock mass under high water pressure 被引量:2
3
作者 Zhongming Jiang Shurong Feng Sheng Fu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期88-96,共9页
To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ... To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model. 展开更多
关键词 fractured rock mass permeability under the condition of high water head hydro-mechanical coupling effect
下载PDF
Engineering Geological and Geotechnical Investigations for Design of Oxygen Plant 被引量:1
4
作者 Khaleel Hussain Dou Bin +4 位作者 Javid Hussain Syed Yasir Ali Shah Hadi Hussain Altaf Hussain Sadam Hussain 《International Journal of Geosciences》 2022年第4期303-318,共16页
The most important aspect of every civil engineering project is acquiring reliable information on the ground on which the project will be constructed. This research includes a site investigation, which is seen as a pr... The most important aspect of every civil engineering project is acquiring reliable information on the ground on which the project will be constructed. This research includes a site investigation, which is seen as a primary stage in gathering geological, geotechnical, and other essential engineering data for structures’ safe and cost-effective design. Five boreholes at well-spaced spots were drilled for subsurface investigation at a maximum depth of 15 m to 30 m. The standard penetration tests (SPT) were performed at different depths, soil samples were taken at various intervals, and lithological changes were observed. The friction angle was between 19.6&#186;and 33.03&#186;, whereas the cohesion ranges between 0.25 kg/cm<sup>2</sup> and 0.42 kg/cm<sup>2</sup>, indicating a strong resistance to shearing and a high capacity to sustain the load. Furthermore, the soil samples’ maximum dry density ranges from 1.63 g/cm<sup>3</sup> to 1.80 g/cm<sup>3</sup>. In addition, water table depths were recorded from 6.0 m to 7.0 m. The net bearing capacity for isolated/pad foundation at a depth of 1.5 m to 2.5 m below the ground level has been calculated as 95.0 to 120.0 kPa and 120.0 to 180.0 kPa for raft foundation. The net allowable pressure settlement limits for isolated/pad and raft foundations are 25 mm (1-inch) and 50 mm (2-inches), respectively. The investigation has found no severe geological flaws on the proposed construction site, and therefore it is appropriate for the construction of an Air Separation Unit (ASU) Oxygen Plant. 展开更多
关键词 Geotechnical Properties Subsurface Profile water conditions SPT Bearing Capacity FOUNDATION
下载PDF
Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions 被引量:4
5
作者 Guina REN Zhaozhu ZHANG +3 位作者 Xiaotao ZHU Xuehu MEN Wei JIANG Weimin LIU 《Friction》 SCIE EI CAS 2014年第3期264-271,共8页
A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient... A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient for the Nomex fabric/phenolic composite in the study occurred in the following order:dry sliding condition>distilled water‐bathed sliding condition>sea water‐bathed sliding condition.The fabric composite’s wear rate from high to low was as follows:distilled water‐bathed sliding condition>sea water‐bathed sliding condition>dry sliding condition.Under water‐bathed sliding conditions,penetration of water into the cracks accelerated the composite’s invalidation process,resulting in a higher wear rate.We also found that the extent of corrosion and transfer film formed on the counterpart pin significantly influenced the wear rate of the Nomex fabric composite.Discussion of the Nomex fabric composite’s wear mechanisms under the sliding conditions investigated is provided on the basis of the characterization results. 展开更多
关键词 Nomex fabric/phenolic composite friction and wear property dry and water‐bathed sliding condition
原文传递
Comparative Analysis of Two Rainstorms in the Southwest of Hunan Province
6
作者 LV Xiao-hua DAI Jin +1 位作者 YANG Ke ZHU He-xiang 《Meteorological and Environmental Research》 CAS 2012年第12期20-28,32,共10页
Using NCEP 1° × 1° reanalysis data within 6 h, conventional observational data, data from regional automatic rainfall stations, satellite cloud pictures and Doppler radar data, we compared the physical ... Using NCEP 1° × 1° reanalysis data within 6 h, conventional observational data, data from regional automatic rainfall stations, satellite cloud pictures and Doppler radar data, we compared the physical conditions, dynamic and thermodynamic characteristics of two rainstorms in the southwest of Hunan Province on May 12 and June 15 in 2011. The results showed that the first process was triggered by strong cold air under unstable potential, while the second process was caused by shear line appearing from the east; during the first process, cold air divided into many parts and moved towards south, rainfall was uniform and lasted for a long time, while rainfall was relatively concentrated and strong, and lasted for a short time during the second process; the peak of K index appeared only during the second process; no sign of heavy rainfall was found from satellite cloud pictures and radar echo pictures during the first process, while obvious cloud cluster and echo ribbons could be found from satellite cloud pictures and radar echo pictures during the second process, which were the sign of heavy rainfall; slow movement of echo or little movement resulted in the second rainstorm, and constant echo intensity was the main reason for the occurrence of the second rainstorm. In addition, there was low-level southwest jet during the two processes, which provided favorable conditions for the transportation of water vapor and energy during the two processes. However, there was a great difference between the two rainstorms in the intensity and thickness of low-level jet, that is, the intensity and thickness of low-level jet during the first process were obviously weaker than these during the second process. 展开更多
关键词 RAINSTORM Influence system Comparative analysis water vapor conditions Southwest jet Radar echo China
下载PDF
ON VELOCITY POTENTIALS DUE TO PULSATING PRESSURE DISTRIBUTIONS ON THE FREE SURFACE OF INFINITE-DEPTH WATERS AND THE RADIATION CONDITIONS FOR SECOND-ORDER DIFFRACTION PROBLEMS
7
作者 Miao Guo-ping Liu Ying-zhong Shanghai Jiao Tong University,Shanghai,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第4期103-114,共12页
In the present paper,two-and three-dimensional velocity potentials generated by pulsating pressure distributions of infinite extent on the free surface of infinite-depth waters are strictly derived based on special ca... In the present paper,two-and three-dimensional velocity potentials generated by pulsating pressure distributions of infinite extent on the free surface of infinite-depth waters are strictly derived based on special cases of concentrated pulsating pressure.The far-field asymptotic behaviour of the potentials and the radiation conditions to be satisfied by them are discussed. It is proved in a general sense that the potentials should be composed of a forced wave component,a free wave component and a local disturbance component.The radiation condition of the forced wave component should correspond to the far-field asymptotic behaviour of the pressure distribution,Hence,the formulation of radiation conditions for the second-order diffraction potentials has theoretically become clear,The radiation conditions for two-and three-dimensional problems are explicitly given in the paper. 展开更多
关键词 ON VELOCITY POTENTIALS DUE TO PULSATING PRESSURE DISTRIBUTIONS ON THE FREE SURFACE OF INFINITE-DEPTH waterS AND THE RADIATION conditions FOR SECOND-ORDER DIFFRACTION PROBLEMS 于七 body
原文传递
Effects of biological soil crusts on profile distribution of soil water,organic carbon and total nitrogen in Mu Us Sandland,China 被引量:4
8
作者 Shuqin Gao Xuehua Ye +1 位作者 Yu Chu Ming Dong 《Journal of Plant Ecology》 SCIE 2010年第4期279-284,共6页
Aims Biological soil crusts(BSCs)can affect soil properties including water dynamics and cycling of soil carbon and nitrogen in dryland ecosystems.Previous research has mostly focused on effects of BSCs on soil water ... Aims Biological soil crusts(BSCs)can affect soil properties including water dynamics and cycling of soil carbon and nitrogen in dryland ecosystems.Previous research has mostly focused on effects of BSCs on soil water distribution or carbon and nitrogen fixation in the surface soil layer.Thus,little is known about effects of BSCs on properties throughout the soil profile.In the current study,we assessed the effects of BSCs on the distribution of soil water content(SW),soil organic carbon content(SOC)and soil total nitrogen content(STN)throughout the soil profile as well as the influence of water conditions on the effects of BSCs.Methods In a field investigation in Mu Us Sandland,North China,soil samples were taken from plots with and without BSCs on 13 and 28 September 2006,respectively.On the two sampling dates,average soil gravimetric water content was 3.83%(61.29%)and 5.08%(60.89%),respectively,which were regarded as low and high water conditions.Soil samples were collected every 5 cm to a depth of 60 cm,and SW,SOC and STN were measured in the laboratory.Important Findings(i)BSCs affected profile distribution of SW,SOC and STN.In addition,water conditions within the plots significantly modified BSCs’effects on the profile distribution of SW,but marginally affected the effects on SOC and STN.(ii)Under high water conditions,SW in the surface soil layer(0–10 cm)was higher in soils with BSCs compared to those without BSCs,while the opposite was true in the deep soil layer(30–55 cm).(iii)Under low water conditions,SW was lower with BSCs compared with no BSCs in near-surface(5–20 cm)and deep(25–40 cm)soil layers.(iv)BSCs affected SOC and STN only in the surface soil layer(0–5 cm)and were modified by plot water conditions. 展开更多
关键词 biological soil crusts plot water condition profile distribution soil organic carbon soil total nitrogen soil water
原文传递
Greenhouse gas emissions from oilfield-produced water in Shengli Oilfield,Eastern China 被引量:2
9
作者 Shuang Yang Wei Yang +4 位作者 Guojun Chen Xuan Fang Chengfu Lv Jiaai Zhong Lianhua Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期101-108,共8页
Greenhouse gas(GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in... Greenhouse gas(GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in situ detection and simulation experiments were developed to study the natural release of GHG into the atmosphere in the Shengli Oilfield,the second largest oilfield in China. The results showed that methane(CH4) and carbon dioxide(CO2) were the primary gases released naturally from the oilfield-produced water.The atmospheric temperature and release time played important roles in determining the CH4 and CO2emissions under atmospheric conditions. Higher temperatures enhanced the carbon emissions. The emissions of both CH4 and CO2from oilfield-produced water were highest at 27°C and lowest at 3°C. The bulk of CH4 and CO2was released from the oilfield-produced water during the first release period, 0–2 hr, for each temperature, with a maximum average emission rate of 0.415 g CH4/(m3·hr) and 3.934 g CO2/(m3·hr), respectively. Then the carbon emissions at other time periods gradually decreased with the extension of time. The higher solubility of CO2 in water than CH4 results in a higher emission rate of CH4 than CO2over the same release duration. The simulation proved that oilfield-produced water is one of the potential emission sources that should be given great attention in oil and gas systems. 展开更多
关键词 Methane Carbon dioxide Oilfield-produced water Atmospheric conditions
原文传递
Effects of sulfate-reducing bacteria on methylmercury at the sediment–water interface 被引量:1
10
作者 Lingxia Zeng Guangjun Luo +2 位作者 Tianrong He Yanna Guo Xiaoli Qian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期214-219,共6页
Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reduc... Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system. 展开更多
关键词 Methyl mercury Sediment–water interface Microbial activity Redox condition Sulfate-reducing bacteria
原文传递
1986-2015年小浪底水库运行前后黄河下游主槽调整规律 被引量:6
11
作者 王彦君 吴保生 钟德锤 《Journal of Geographical Sciences》 SCIE CSCD 2020年第3期468-486,共19页
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the... Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC. 展开更多
关键词 lower Yellow River changes in water and sediment conditions Xiaolangdi Reservoir geometry of main channel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部