期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system 被引量:1
1
作者 Nariman MAHMOODI Jens KIESEL +1 位作者 Paul D WAGNER Nicola FOHRER 《Journal of Arid Land》 SCIE CSCD 2020年第4期545-560,共16页
Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u... Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly. 展开更多
关键词 SWAT model stream flow Wadis multi-metric framework water use systems soil and water conservation measures Halilrood Basin
下载PDF
Effects of ecological soil and water conservation measures on soil erosion control in China’s typical regions:A meta-analysis
2
作者 LI Mingming XU Guangzhi +2 位作者 YANG Kaicheng DAI Fuqiang ZHOU Ping 《中国水土保持科学》 2024年第6期163-175,共13页
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl... [Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China. 展开更多
关键词 ecological soil and water conservation measures runoff sediment water erosion region
下载PDF
Necessity and Measures of Water Conservation for Coal-fired Power Plants in China
3
《Electricity》 1999年第1期31-35,共5页
关键词 Necessity and measures of water conservation for Coal-fired Power Plants in China
下载PDF
Impacts of water conservancy and soil conservation measures on annual runoff in the Chaohe River Basin during 1961-2005 被引量:9
4
作者 LI Zijun LI Xiubin XU Zhimei 《Journal of Geographical Sciences》 SCIE CSCD 2010年第6期947-960,共14页
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K... Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period. 展开更多
关键词 IMPACTS water conservancy and soil conservation measures annual runoff rainfall-runoff empirical statistical model the Chaohe River Basin
原文传递
Soil erosion assessment by RUSLE with improved P factor and its validation:Case study on mountainous and hilly areas of Hubei Province,China 被引量:8
5
作者 Pei Tian Zhanliang Zhu +6 位作者 Qimeng Yue Yi He Zhaoyi Zhang Fanghua Hao Wenzhao Guo Lin Chen Muxing Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2021年第3期433-444,共12页
The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE r... The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE remain largely unclear,especially for the mountainous and hilly areas.In this study,we improved the RUSLE by considering quantitative impacts of different SWC measures on the P factor value.The improved RUSLE was validated against the long-term(2000-2015)soil erosion monitoring data obtained from 96 runoff plots(15—35°)in mountainous and hilly areas of Hubei Province,China;the result presented a high accuracy with the determination coefficient of 0.89.Based on the erosion monitoring data of 2018 and 2019,the Root Mean Square Error of the result by the improved RUSLE was 28.0%smaller than that by the original RUSLE with decrement of 19.6%—24.0%in the average P factor values,indicating that the soil erosion modelling accuracy was significantly enhanced by the improved RUSLE.Relatively low P factor values appeared for farmlands with tillage measures(P<0.53),grasslands with engineering measures(P<0.23),woodlands with biological measures(P<0.28),and other land use types with biological measures(P<0.51).The soil erosion modulus showed a downward trend with the corresponding values of 1681.21,1673.14,1594.70,1482.40 and 1437.50 t km^(-2)a-1 in 2000,2005,2010,2015 and 2019,respectively.The applicability of the improved RUSLE was verified by the measurements in typical mountainous and hilly areas of Hubei Province,China,and arrangements of SWC measures of this area were proposed. 展开更多
关键词 conservation practice factor(P) Soil and water conservation measure Soil erosion Land use Monitoring data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部