Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provisi...Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on “Forestry Interventions for Ganga” to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM·yr<sup>-1</sup> and 1119.6 cubic m·yr<sup>-1</sup> or 395.20 tons·yr<sup>-1</sup>, respectively, in delineated riverscape area of 83,946 km<sup>2</sup> in Ganga basin due to these interventions. The role of trees and forests in improving hydrologic cycles, soil infiltration and ground water recharge in Ganga basin seems to be the reason for this change. Forest plantations and other bioengineering techniques can help to keep rivers perennial, increase precipitation, prevent soil erosion and mitigate floods, drought & climate change. The bioengineering techniques could be a feasible tool to enhance rivers’ self-purification as well as to make river perennial. The results will give momentum to the National Mission of Clean Ganga (NMCG) and its Namami Gange programme including other important rivers in the country and provide inputs in understanding the linkages among forest structure, function, and streamflow.展开更多
It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing ini...It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing initiative called “Rejuvenation of Krishna River through Forestry Interventions” aims to contribute to the overall river rejuvenation program in the country. In this context, the effects of forestry interventions on the Krishna River will be evaluated based on water quantity, water quality, and the potential for carbon sequestration through plantation efforts. To assess the outcomes of this study, various methodologies such as Soil Conservation Service Curve Number (SCS-CN), Central Ground Water Board (CGWB) and Intergovernmental Panel on Climate Change (IPCC) have been utilized to estimate water savings, reduction in sedimentation, and carbon sequestration potential within the Krishna basin. The projected results indicate that the implementation of forestry plantations and soil and moisture conservation measures in the Krishna River rejuvenation program could lead to significant improvements. Specifically, the interventions are expected to enhance water recharge by 400.49 million cubic meters per year, reduce sedimentation load by 869.22 cubic meters per year, and increase carbon sequestration by 3.91 lakh metric tonnes per year or 14.34 lakh metric tonnes of CO<sub>2</sub> equivalent. By incorporating forestry interventions into the Krishna riverscape, it is anticipated that the quality and quantity of water flowing through the river will be positively impacted. These interventions will enhance water infiltration, mitigate soil erosion, and contribute to an improved vegetation cover, thereby conserving biodiversity. Moreover, they offer additional intangible benefits such as addressing climate change concerns through enhanced carbon sequestration potential along the entire stretch of riverine areas.展开更多
The Huai River Basin is a unique area in P.R.China with the highest densities of population and water projects.It is also subject to the most serious water pollution.We proposed a distributional SWAT(Soil and Water As...The Huai River Basin is a unique area in P.R.China with the highest densities of population and water projects.It is also subject to the most serious water pollution.We proposed a distributional SWAT(Soil and Water Assessment Tool) model coupled with a water quality-quantity balance model to evaluate dam impacts on river flow regimes and water quality in the middle and upper reaches of the Huai River Basin.We calibrated and validated the SWAT model with data from 29 selected cross-sections in four typical years(1971,1981,1991 and 1999) and used scenario analysis to compensate for the unavailability of historical data regarding uninterrupted river flows before dam and floodgate construction,a problem of prediction for ungauged basins.The results indicate that dam and floodgate operations tended to reduce runoff,decrease peak value and shift peaking time.The contribution of water projects to river water quality deterioration in the concerned river system was between 0 to 40%,while pollutant discharge contributed to 60% to 100% of the water pollution.Pollution control should therefore be the key to the water quality rehabilitation in the Huai River Basin.展开更多
The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake i...The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.展开更多
Huaihe River is one of three major rivers in China with a large population and developed economy. By the 1970s, the water quality of Huaihe River was deteriorating daily and more than a hundred serious pollution accid...Huaihe River is one of three major rivers in China with a large population and developed economy. By the 1970s, the water quality of Huaihe River was deteriorating daily and more than a hundred serious pollution accidents of water quality happened and caused the inestimable losses in the production, life and health of residents along the river and terribly damaged the ecological system of the river. Through the continuous large-scale treatment for more than 10 years, the deterioration of water quality in Huaihe River has been basically inhibited. Nevertheless, the water pollution in Huaihe River is, on the whole, still very serious for many reasons, including special climatic conditions, terrible lack of water resource, obsolete industrial structure and unsound management system for the river, etc. This essay deeply analyzes the rea- sons why the water pollution of Huaihe River is "chronic" and puts forward the corresponding countermeasures for how to continuously improve the water quality of the river. In the end, this essay argues that it still takes 30-50 years or even a longer period, even if every measures are implemented smoothly and strictly, to actually make the water of Huaihe River clean and gradually restore its normal ecological and environmental functions.展开更多
The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these ...The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.展开更多
The Yarlung Zangbo River Basin(YZRB)is situated in the southern part of the Tibetan Plateau and remains in a mostly natural state.To understand the chemical characteristics of spring water and its controlling factors ...The Yarlung Zangbo River Basin(YZRB)is situated in the southern part of the Tibetan Plateau and remains in a mostly natural state.To understand the chemical characteristics of spring water and its controlling factors in the YZRB,68 sets of spring water samples were analyzed using hydrochemical and isotopic techniques.The spring water was found to be slightly alkaline with total dissolved solids(TDS)below 1000 mg L−1.Major ions were Mg2+,Ca2+,SO42−,and HCO3−.The spring water types in this basin were determined to be HCO3-Ca·Mg and SO4·Cl-Ca·Mg.Ion exchange and dissolution of carbonate,gypsum,and silicate were identified as the prevalent hydrogeochemical processes contributing and defining spring water chemistry in this basin.Saturation indices(SI)of most major minerals studied in this region were below zero,indicating that these minerals remain under-saturated in the spring water in this area.Overall,the rank of different processes in terms of their contribution to the chemical composition of spring water in the YZRB was carbonate weathering>evaporate dissolution>silicate weathering>precipitation input.The content of 18O in spring water ranged from−22.22‰to−14.08‰with a mean of−18.15‰.Samples collected below and close to the local and global meteoric water lines indicated that spring water in this area is derived from meteoric water with chemistry affected by evaporation.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing season...The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing seasons of winter wheat and rice crops cultivated in a farmland ecosystem(Shouxian County) located in the Huai River Basin(HRB), China. The first model is a two-step model(PM-Kc);the other two are one-step models(e.g., Rana-Katerji(R-K) and advection-aridity(AA)). The results showed that the energy closure degrees of eddy covariance(EC) data during winter wheat and rice-growing seasons were reasonable in the HRB, with values ranging from 0.84 to 0.91 and R2 of approximately 0.80. Daily ET of winter wheat showed a slow decreasing trend followed by a rapid increase, while that of rice presented a decreasing trend after an increase. After calibrating the crop coefficient(Kc), the PM–Kc model performed better than the model using the Kc recommended by the Food and Agricultural Organization(FAO). The calibrated key parameters of the R-K model and AA model showed better universality. After calibration, the simulation performance of the PM-Kc model was satisfactory. Both the R-K model and AA model underestimated the daily ET of winter wheat and rice. Compared with that of the R-K model, the simulation result of the AA model was better, especially in the simulation of daily ET of rice. Overall, this research highlighted the consistency of the PM-Kc model to estimate the water demand for rice and wheat crops in the HRB and in similar climatic regions in the world.展开更多
Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ...Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.展开更多
This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geog...This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geographical change particularly captured by the Yellow River, (2) water conservancy project construction, and (3) socioeconomic development in the Huai River Basin. Key problems of changes in this river-lake relationship and the Huai River flood control are tackled, involving flood control and disaster alleviation ability of the Basin, engineering and non-engineering measurements applied to flood control and disaster mitigation, and water governance for adaptive management. Research shows that the Huai River is a rather complex one due to its complex geography with a hybrid wet and dry climate zoon, and higher population density. With the alternation of the river-lake relationship and socioeconomic development in the region, new problems keep arising, imposing new requirements on its sustainable water management. Thus, understanding the Huai River is a long and gradually improving process. Its future planning should keep absorbing new achievements of science and technology development, employing new technologies and methods, and gradually deepening our understanding of its fundamental principles. Water governance and adaptive water management will be new challenges and opportunities for the Basin in its river system change and flood control.展开更多
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield bas...The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).展开更多
Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to...Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.展开更多
Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy s...Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.展开更多
Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection...Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.展开更多
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in ...According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in the river mouth area,the adjustment of river regime,the effect of river regulation projects and changes of flowing capacity of the channel are analyzed.It is revealed that the water and sediment regulation is efficient to reduce deposition and improve the flowing capacity and the conditions of sediment transport.展开更多
We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. ...We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. The Boussinesq assumptions and the Navier-Stokes equations of incompressible fluid were applied to setting up the pollutant diffusion equations and the equations for the decay process. E. colt was taken as the example pollutant, and chloride dosage, light, temperature and ultraviolet intensity were considered in the equations for bacterial decay process. The calculated values of the fluid velocities in the two rivers agree well with corresponding measured results, indicating an ideal accuracy of the model. In simulation, the concentration of E. colt in water was assumed to be zero before the accident. The and 1.75 m/s for the Yangtze flow, and the downriver boundary was upriver boundary velocity was -1.35 m/s for the Jialing flow water depth set at 0. Simulation results show that the bacteria are transported downstream along the riverbank. A long and narrow pollutant belt develops at 12 h after the start of the accident ascribed to the quick longitudinal transfer. After the pollution sources are cut off, the pollutant concentration decreases slowly, mostly by advection and diffusion, suggesting inadequate self-purification ability of the rivers and the necessity of effective decontaminating measures in the case of a pollution incident, The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body of the Three Gorges Reservoir.展开更多
This paper describes the model simulation of a portion of the Huaihe Basin upstream of the river mouth at Hongze Lake, with an area of 130 520 km2. The MIKE 11 modeling system was used to assess the flows and water qu...This paper describes the model simulation of a portion of the Huaihe Basin upstream of the river mouth at Hongze Lake, with an area of 130 520 km2. The MIKE 11 modeling system was used to assess the flows and water quality in the Huaihe, Shayinghe, Honghe, Guohe, and Pihe rivers, The hydraulic part of the model was used to study the propagation of flows in the Huaihe River, which was calibrated with data from 2002-2003 and verified with data from 2004-2005. In general, there was agreement between measured and simulated discharges at all the hydrological stations. Except for some places close to large gates, there was reasonable agreement between measured and simulated water levels in the simulated rivers. The MIKE 11 WQ (water quality) model was used to study general sanitary parameters describing the river water quality in areas influenced by human activities. The water quality model simulated dissolved oxygen (DO), chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The difference between the simulated and observed concentrations was within the range that could be expected from water quality modeling, taking into account uncertainties such as pollution loads, and monitoring and sampling frequency. This model setup was also suitable for the subsequent scenario modeling of periods of water project operation. In the simulation of the Pihe River, increasing the discharge at Hengpaitou Dam was shown to cause a significant improvement in water quality downstream of Lu'an City. In the Shayinghe and Huaihe rivers, the effect was less visible. This suggests that the poor water quality in the Huaihe Basin is mainly caused by extensive discharge of domestic and industrial wastewater.展开更多
文摘Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on “Forestry Interventions for Ganga” to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM·yr<sup>-1</sup> and 1119.6 cubic m·yr<sup>-1</sup> or 395.20 tons·yr<sup>-1</sup>, respectively, in delineated riverscape area of 83,946 km<sup>2</sup> in Ganga basin due to these interventions. The role of trees and forests in improving hydrologic cycles, soil infiltration and ground water recharge in Ganga basin seems to be the reason for this change. Forest plantations and other bioengineering techniques can help to keep rivers perennial, increase precipitation, prevent soil erosion and mitigate floods, drought & climate change. The bioengineering techniques could be a feasible tool to enhance rivers’ self-purification as well as to make river perennial. The results will give momentum to the National Mission of Clean Ganga (NMCG) and its Namami Gange programme including other important rivers in the country and provide inputs in understanding the linkages among forest structure, function, and streamflow.
文摘It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing initiative called “Rejuvenation of Krishna River through Forestry Interventions” aims to contribute to the overall river rejuvenation program in the country. In this context, the effects of forestry interventions on the Krishna River will be evaluated based on water quantity, water quality, and the potential for carbon sequestration through plantation efforts. To assess the outcomes of this study, various methodologies such as Soil Conservation Service Curve Number (SCS-CN), Central Ground Water Board (CGWB) and Intergovernmental Panel on Climate Change (IPCC) have been utilized to estimate water savings, reduction in sedimentation, and carbon sequestration potential within the Krishna basin. The projected results indicate that the implementation of forestry plantations and soil and moisture conservation measures in the Krishna River rejuvenation program could lead to significant improvements. Specifically, the interventions are expected to enhance water recharge by 400.49 million cubic meters per year, reduce sedimentation load by 869.22 cubic meters per year, and increase carbon sequestration by 3.91 lakh metric tonnes per year or 14.34 lakh metric tonnes of CO<sub>2</sub> equivalent. By incorporating forestry interventions into the Krishna riverscape, it is anticipated that the quality and quantity of water flowing through the river will be positively impacted. These interventions will enhance water infiltration, mitigate soil erosion, and contribute to an improved vegetation cover, thereby conserving biodiversity. Moreover, they offer additional intangible benefits such as addressing climate change concerns through enhanced carbon sequestration potential along the entire stretch of riverine areas.
基金Funded by the Key Project of International Cooperation of the Natural Science Foundation of China (No. 40721140020)the Key Project of the Natural Science Foundation of China (No. 40730632)
文摘The Huai River Basin is a unique area in P.R.China with the highest densities of population and water projects.It is also subject to the most serious water pollution.We proposed a distributional SWAT(Soil and Water Assessment Tool) model coupled with a water quality-quantity balance model to evaluate dam impacts on river flow regimes and water quality in the middle and upper reaches of the Huai River Basin.We calibrated and validated the SWAT model with data from 29 selected cross-sections in four typical years(1971,1981,1991 and 1999) and used scenario analysis to compensate for the unavailability of historical data regarding uninterrupted river flows before dam and floodgate construction,a problem of prediction for ungauged basins.The results indicate that dam and floodgate operations tended to reduce runoff,decrease peak value and shift peaking time.The contribution of water projects to river water quality deterioration in the concerned river system was between 0 to 40%,while pollutant discharge contributed to 60% to 100% of the water pollution.Pollution control should therefore be the key to the water quality rehabilitation in the Huai River Basin.
文摘The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.
文摘Huaihe River is one of three major rivers in China with a large population and developed economy. By the 1970s, the water quality of Huaihe River was deteriorating daily and more than a hundred serious pollution accidents of water quality happened and caused the inestimable losses in the production, life and health of residents along the river and terribly damaged the ecological system of the river. Through the continuous large-scale treatment for more than 10 years, the deterioration of water quality in Huaihe River has been basically inhibited. Nevertheless, the water pollution in Huaihe River is, on the whole, still very serious for many reasons, including special climatic conditions, terrible lack of water resource, obsolete industrial structure and unsound management system for the river, etc. This essay deeply analyzes the rea- sons why the water pollution of Huaihe River is "chronic" and puts forward the corresponding countermeasures for how to continuously improve the water quality of the river. In the end, this essay argues that it still takes 30-50 years or even a longer period, even if every measures are implemented smoothly and strictly, to actually make the water of Huaihe River clean and gradually restore its normal ecological and environmental functions.
文摘The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.
基金supported by the Center for Hydrogeology and Environmental Geology Survey,China Geological Survey(112120114059601,DD20160298,2019QZKK020703,KKLFSE201304)the China Postdoctoral Science Foundation(2020M682207).
文摘The Yarlung Zangbo River Basin(YZRB)is situated in the southern part of the Tibetan Plateau and remains in a mostly natural state.To understand the chemical characteristics of spring water and its controlling factors in the YZRB,68 sets of spring water samples were analyzed using hydrochemical and isotopic techniques.The spring water was found to be slightly alkaline with total dissolved solids(TDS)below 1000 mg L−1.Major ions were Mg2+,Ca2+,SO42−,and HCO3−.The spring water types in this basin were determined to be HCO3-Ca·Mg and SO4·Cl-Ca·Mg.Ion exchange and dissolution of carbonate,gypsum,and silicate were identified as the prevalent hydrogeochemical processes contributing and defining spring water chemistry in this basin.Saturation indices(SI)of most major minerals studied in this region were below zero,indicating that these minerals remain under-saturated in the spring water in this area.Overall,the rank of different processes in terms of their contribution to the chemical composition of spring water in the YZRB was carbonate weathering>evaporate dissolution>silicate weathering>precipitation input.The content of 18O in spring water ranged from−22.22‰to−14.08‰with a mean of−18.15‰.Samples collected below and close to the local and global meteoric water lines indicated that spring water in this area is derived from meteoric water with chemistry affected by evaporation.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
基金supported by the National Natural Science Foundation of China (41905100)the Anhui Provincial Natural Science Foundation, China (1908085QD171)+3 种基金the Anhui Agricultural University Science Foundation for Young Scholars, China (2018zd07)the Anhui Agricultural University Introduction and Stabilization of Talent Fund, China (yj2018-57)the National Key Research and Development Program of China (2018YFD0300905)the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (KYCX17_0885)。
文摘The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing seasons of winter wheat and rice crops cultivated in a farmland ecosystem(Shouxian County) located in the Huai River Basin(HRB), China. The first model is a two-step model(PM-Kc);the other two are one-step models(e.g., Rana-Katerji(R-K) and advection-aridity(AA)). The results showed that the energy closure degrees of eddy covariance(EC) data during winter wheat and rice-growing seasons were reasonable in the HRB, with values ranging from 0.84 to 0.91 and R2 of approximately 0.80. Daily ET of winter wheat showed a slow decreasing trend followed by a rapid increase, while that of rice presented a decreasing trend after an increase. After calibrating the crop coefficient(Kc), the PM–Kc model performed better than the model using the Kc recommended by the Food and Agricultural Organization(FAO). The calibrated key parameters of the R-K model and AA model showed better universality. After calibration, the simulation performance of the PM-Kc model was satisfactory. Both the R-K model and AA model underestimated the daily ET of winter wheat and rice. Compared with that of the R-K model, the simulation result of the AA model was better, especially in the simulation of daily ET of rice. Overall, this research highlighted the consistency of the PM-Kc model to estimate the water demand for rice and wheat crops in the HRB and in similar climatic regions in the world.
基金supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403)the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province)+1 种基金the National Natural Science Foundation of China (No.41340046)Modeling work was completed at the Computing Services Center,Ocean University of China
文摘Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.
基金The National Basic Research Program of China (2010CB428406)the National Natural Science Foundation of China (No. 41071025/40730632) & National Key Water Project (No.2009ZX07210-006)
文摘This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geographical change particularly captured by the Yellow River, (2) water conservancy project construction, and (3) socioeconomic development in the Huai River Basin. Key problems of changes in this river-lake relationship and the Huai River flood control are tackled, involving flood control and disaster alleviation ability of the Basin, engineering and non-engineering measurements applied to flood control and disaster mitigation, and water governance for adaptive management. Research shows that the Huai River is a rather complex one due to its complex geography with a hybrid wet and dry climate zoon, and higher population density. With the alternation of the river-lake relationship and socioeconomic development in the region, new problems keep arising, imposing new requirements on its sustainable water management. Thus, understanding the Huai River is a long and gradually improving process. Its future planning should keep absorbing new achievements of science and technology development, employing new technologies and methods, and gradually deepening our understanding of its fundamental principles. Water governance and adaptive water management will be new challenges and opportunities for the Basin in its river system change and flood control.
基金funded by the Major Programs of the Chinese Academy of Sciences (KZZD-EW-04-03-04)the National Science-technology Support Plan Project (2006BAD09B10)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-406)
文摘The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).
基金supported by the National Natural Sciences Foundation of China (Project Nos. 51079132 and 50679075)the Special Research Fund Project of the Chinese Ministry of Water Resources (Grant No. 200801001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094101110002)the National Key Scientific and Technological Project on Water Pollution Control and Treatment of China (Project No. 2009ZX07210-006)
文摘Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.
文摘Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.
文摘Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
基金Supported by National Natural Science Foundation of China(No.50679053)
文摘According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in the river mouth area,the adjustment of river regime,the effect of river regulation projects and changes of flowing capacity of the channel are analyzed.It is revealed that the water and sediment regulation is efficient to reduce deposition and improve the flowing capacity and the conditions of sediment transport.
基金Chongqing University Postgraduates’ Science and Innovation Fund (No.200701Y1B0270213)
文摘We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. The Boussinesq assumptions and the Navier-Stokes equations of incompressible fluid were applied to setting up the pollutant diffusion equations and the equations for the decay process. E. colt was taken as the example pollutant, and chloride dosage, light, temperature and ultraviolet intensity were considered in the equations for bacterial decay process. The calculated values of the fluid velocities in the two rivers agree well with corresponding measured results, indicating an ideal accuracy of the model. In simulation, the concentration of E. colt in water was assumed to be zero before the accident. The and 1.75 m/s for the Yangtze flow, and the downriver boundary was upriver boundary velocity was -1.35 m/s for the Jialing flow water depth set at 0. Simulation results show that the bacteria are transported downstream along the riverbank. A long and narrow pollutant belt develops at 12 h after the start of the accident ascribed to the quick longitudinal transfer. After the pollution sources are cut off, the pollutant concentration decreases slowly, mostly by advection and diffusion, suggesting inadequate self-purification ability of the rivers and the necessity of effective decontaminating measures in the case of a pollution incident, The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body of the Three Gorges Reservoir.
基金supported by the National Natural Science Foundation of China (Grant No. 50709033)the Key Project of the International Cooperation of the Natural Science Foundation of China (Grant No. 40721140020)
文摘This paper describes the model simulation of a portion of the Huaihe Basin upstream of the river mouth at Hongze Lake, with an area of 130 520 km2. The MIKE 11 modeling system was used to assess the flows and water quality in the Huaihe, Shayinghe, Honghe, Guohe, and Pihe rivers, The hydraulic part of the model was used to study the propagation of flows in the Huaihe River, which was calibrated with data from 2002-2003 and verified with data from 2004-2005. In general, there was agreement between measured and simulated discharges at all the hydrological stations. Except for some places close to large gates, there was reasonable agreement between measured and simulated water levels in the simulated rivers. The MIKE 11 WQ (water quality) model was used to study general sanitary parameters describing the river water quality in areas influenced by human activities. The water quality model simulated dissolved oxygen (DO), chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The difference between the simulated and observed concentrations was within the range that could be expected from water quality modeling, taking into account uncertainties such as pollution loads, and monitoring and sampling frequency. This model setup was also suitable for the subsequent scenario modeling of periods of water project operation. In the simulation of the Pihe River, increasing the discharge at Hengpaitou Dam was shown to cause a significant improvement in water quality downstream of Lu'an City. In the Shayinghe and Huaihe rivers, the effect was less visible. This suggests that the poor water quality in the Huaihe Basin is mainly caused by extensive discharge of domestic and industrial wastewater.