The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,...The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,as agriculture represents 70%of water consumption on Earth.This consumption varies greatly according to the countries where supply chain is located.The estimation is attempted for 27 European listed companies in sectors relying on agriculture in its supply chain.A data is estimated for 22 companies,showing that indirect water consumption is much more important than direct one.Strategic questions raised through the estimation of indirect water consumption in various subsectors show the interest in this data,which represents the equivalent of Carbon Scope 3 for water issues.展开更多
The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In e...The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In each pond, the individuals of C. garipinus with an average weight of 6 ± 0.3 g were stocked at a density of 11 per m2. The water temperature and pH were measured during the experiment. The control fishing is carried out every month to monitor variations in the weight and size of reared individuals. The plant production is carried out in elementary plots measuring 3 m × 1.5 m. Each plot was fertilized with either: drained water from C. gariepinus rearing (DWC), poultry droppings (PD), cow dung (CD) and mineral fertilizer (NPK). Treatments are carried out in tripliqua with either river water (RW), RW + the recommended dose of NPK (RD-NPK), RW + RD-PD, RW + RD-CD, DWC, DWC + 25% RD-NPK, DWC + 50% RD-NPK, DWC + 75% RD-NPK, DWC + 25% RD-PD, DWC + 50% RD-PD, DWC + 75% RD-PD, DWC + 25% RD-CD, DWC + 50% RD-CD, DWC + 75% RD-CD. Growth parameters and yield of okra were determined. The average temperature in the rearing environment was 27.6 ± 1.5˚C and pH 7.9 ± 1.1. After six (06) months of rearing, C. gariepinus individuals reached an average weight of 850.12 ± 1.3 g and an average height of 52.44 ± 1.1 cm. The daily weight gain and specific growth rates over this period were 3.9 g per day and 2.8% per day, respectively. The treatment T1 (RW + DR-NPK) gave the highest mean collar diameter and mean plant height with 2.3 ± 0.9 cm and 61.6 ± 32 cm, respectively. In T4 (DWC), the mean height of plants was 38.8 ± 23.5 cm and mean collar diameter 1.4 ± 0.8 cm. The growth performance in T4 was comparable to that of RD-CD (T3), but different from RD-NPK (T1) and RD-PD (T2). The highest average number, average weight, average length and average diameter of fruits were noted in treatments T13 (RW + RD-75%CD) and T7 (DWC + 75% RD-NPK). The best yields were noted in T1 (RW + RD-NPK) = 10.8 ± 5.4 t·ha−1, T5 (DWC + 25% RD-NPK) = 9.2 ± 4.6 t·ha−1 and T4 (DWC) = 8.6 ± 4.3 t·ha−1 which are comparable and higher than those obtained in T2 = 5.7 ± 2.8 t·ha−1 and T3 = 7.5 ± 3.8 t·ha−1.展开更多
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o...Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.展开更多
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol...This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.展开更多
[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.W...[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.展开更多
[Objective] The aim was to establish the water quality evaluation index system for freshwater aquaculture pond.[Method] The expert survey,DELPHI,field research and other methods were used.Based on the analysis of fact...[Objective] The aim was to establish the water quality evaluation index system for freshwater aquaculture pond.[Method] The expert survey,DELPHI,field research and other methods were used.Based on the analysis of factors influencing water quality of freshwater aquaculture pond,and the importance degree of 14 factors influencing water quality of freshwater aquaculture pond was ordered.Then,five factors were selected as index to establish the water quality evaluation index system of freshwater aquaculture with the determination for thresholds of these factors.[Result] The importance degree of water quality of freshwater aquaculture pond showed an order of Dissolved oxygenpHPhytoplankton biomassSecchi depthTotal NitrogenZooplankton biomassWater temperatureBiochemical Oxygen DemandWater colorSalinityTotal hardness;according to the value of importance degree,the dissolved oxygen,pH,secchi depth,phytoplankton biomass and total nitrogen these five factors were selected as the index system of water quality evaluation of pond.The level of water quality of freshwater aquaculture pond was divided into five,and the tolerance range of fish to each index was obtained by expert observation.[Conclusion] This study had provided a scientific basis for water quality evaluation system of freshwater aquaculture pond.展开更多
The aquaculture pond water quality was taken as research objects,based on the general analysis of factors influencing the pond water quality,the system of index estimation and assessment standard were established afte...The aquaculture pond water quality was taken as research objects,based on the general analysis of factors influencing the pond water quality,the system of index estimation and assessment standard were established after sorting by importance of the factors by means of Delphi and expert investigation.In this study,index weight was confirmed according to the importance of the factors and relative membership grade of the measured values,thus and the fuzzy comprehensive evaluation model of aquaculture pond water quality was constructed,and the fuzzy comprehensive evaluation system of freshwater aquaculture pond water quality was designed and implemented.The application of this system in the assessment of aquaculture pond water quality by a company had achieved better result.展开更多
The most directly expressions of the relationships between human and nature lie in the relationships between human and water,human and soil( stone),human and vegetation( plant). Water,soil and vegetation are inter...The most directly expressions of the relationships between human and nature lie in the relationships between human and water,human and soil( stone),human and vegetation( plant). Water,soil and vegetation are interdependent,restricted coexisted and developed from one another,which are integrated and correlated. The history of human's survival and development on the earth is one related continuously with water,soil( stone),vegetation( plant),which involves with the protection and reasonable utilization of water,soil and vegetation resources( also known as soil and water ecological resources),and it has summarized and accumulated abundant culture concerned with the harmonious coexistence of human with water,soil and vegetation,which is the soil and water ecological culture. All peoples of China have accumulated rich soil and water ecological culture in the long term,such as integrated view of nature,nature admiring,nature praising,nature protection and reasonable utilization of nature. It is especially important and urgent in the current times to carry forward soil and water ecological culture.展开更多
Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive...Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.展开更多
This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aer...This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.展开更多
Water used in agriculture consumes much energy, mainly due to pumping water for irrigation, but the water-energy nexus is always neglected in arid and semi-arid areas. Based on hydrological observation data, irrigatio...Water used in agriculture consumes much energy, mainly due to pumping water for irrigation, but the water-energy nexus is always neglected in arid and semi-arid areas. Based on hydrological observation data, irrigation data and socio- economic data over the past 50 yr, this study has derived a detailed estimate of greenhouse gas (GHG) emissions from agricultural water use in the Minqin Oasis. Results show that the decreasing water supply and increasing demand for agriculture has caused severe water deficits over the past 50 yr in this region. The groundwater energy use rate rose by 76% between 1961 and 2009 because of the serious decline in groundwater levels. An increase in pump lift by an average 1 m would cause GHG emission rates to rise by around 2%. Over the past 10 yr, the GHG emissions from groundwater accounted for 65-88% of the total emissions from agricultural water. GHG emissions for diverted water varied from 0.047 to 0.074 Mt CO2e as the water input increased. Long distance conveyance and high pump lifts need more electricity input than groundwater abstraction does. Government policies have had a favorable effect on total emissions by reducing water abstraction. But groundwater depletion, exacerbated by a growing population and an expansion in arable land, remains the principal energy-water nexus challenge in the region. In response to the increasing water-energy crisis, energy-saving irrigation technology, matching to cost efficiencies, and better coordination between different infrastructural agencies could be feasible ways of rendering the water and energy sectors more sustainable over the long term.展开更多
Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the AsiaPacific region, particularly in...Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the AsiaPacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia(July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling(MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their growth seasons. Future works should include quantitative determination of the contribution of epilithic biofilms to the diet of A. japonicus, potential roles of epilithic biofilms in regulating the water quality of sea cucumber ponds, and the regulation of epilithic biofilms in sea cucumber culture ponds.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, whic...Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, which was shown to be a homogeneous polysaccharide by means of high-performance liquid chromatography. The structure of PIPt was determined by using several methods. C.,C analysis indicates that PIP1 is composed of the monosaccharides of glucose, galactose, and mannose. Their malar ratio is 3. 70: 4. 06: 1.00. The molar weight was estimated to be 17 kd via HPLC. IR, GC, partial hydrolysis with acid, pefiedate oxidation, Smith degradation, methylation, and GC-MS analysis were used for the structural analyses of PIP1. The results show that PIP1 has a small quantity of branch structure, The main glycosidic linkage of PIP1 has a β-configurafion. The main chain is made up of a large mass of glucose ( 1→3 ) and few mannose ( 1→4 ) ; the side chain is composed of glucose ( 1 →3 ) and galactose ( 1→6 ) ; the nonreduced end is composed of galactose and glucose. The side chains are branched at 6-0 of glucose( 1→3,6) and mannose(1→4,6). On an average, there are three branches among 20 residues. It is presumable that the existence of 1,3-linked Glc in the main and side chains is the main reason for its higher antitumor activity.展开更多
North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying h...North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying has been frequently observed, as shown by a reduction in precipitation, cutoff in riverflow, and shrinkage of lakes. This increase in drying cannot be explained by climate change alone. We propose that intensive land-use in this area in recent decades has had a significant impact. The objectives of the study are to develop a quantitative model of the concurrent processes of climate change and land-use in North China, and to estimate the relative contributions of each on the observed drying. We integrated relevant socioeconomic data, land-use data, and climate data in the model, and carried out a detailed multi-temporal (decade, year, day) analysis. Results showed that land-use has greatly changed since 1999. This change is mainly associated with an extremely important 1999 national policy of "returning farmland and grazing land to forest and grassland". We found an interesting interaction between climate change and land use policy on riverflow, runoff, and evapotranspiration. During 1970s and 1980s, climate change explained more than 80%, while the land-use change explained only 10% of the riverflow change. The relative contributions were 45 and 45% in the 1980s-1990s and 35 and 55% in the 1990s-2000s respectively for climate change and land-use change. Since the 1990s land-use change has also contributed more to runoff change than climate change. The opposite trend was found for changes in evapotranspiration. Water availability for agriculture in northern China is simultaneously stressed by extensive changes in land-use and rapid climate change. Adaptation of ecological principles, such as the "returning farmland/grazing land to forest and grassland" policy, and other adjustments of economic developmental strategies can be effective tools to mitigate the water shortage problem in northern China and promote sustainable agricultural and food development.展开更多
In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analy...In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analyze the water quality and nitrogen budget including various forms of nitrogen, microorganism and chlorophyll-a. Nitrogen budget was calculated based on feed input, shrimp harvest, water quality and renewal rate, and collection of bottom mud. Input nitrogen retained in shrimp was 23.58% and 19.10% respectively for WES and RAS, and most of nitrogen waste retained in water and bottom mud. In addition, most of nitrogen in the water of WES was TAN(21.32%) and nitrite(15.30%), while in RAS was nitrate(25.97%), which means that more than 76% of ammonia and nitrite were removed. The effect of microalgae in RAS and WES was negligible. However, bacteria played a great role in the culture system considering the highest cultivable cultivable bacterial populations in RAS and WES were 1.03×10^(10) cfu mL^(-1) and 2.92×10~9 cfu mL^(-1), respectively. Meanwhile the proportion of bacteria in nitrogen budget was 29.61% and 24.61% in RAS and WES, respectively. RAS and WES could realize shrimp high stocking culture with water consuming rate of 1.25 m^3 per kg shrimp and 3.89 m^3 per kg shrimp, and power consuming rates of 3.60 kwh per kg shrimp and 2.51 kwh per kg shrimp, respectively. This study revealed the aquatic environment and nitrogen budget of intensive shrimp farming in detail, which provided the scientific basis for improving the industrial shrimp farming.展开更多
Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture ...Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture.展开更多
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological...The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P) accounted for 49.2% of the TP, biological phosphorus (BP) that includes Ex-P, Fe-P, OP, and a portion of Au-P, thus accounted for 34.3% to 83.5% of the TP in the Zhelin Bay, which was within the percentage range, but with a high absolute value among the estuaries. Au-P was the most important species of phosphorus and accounted for 49.2% of the TP during the investigation. Since eutrophication in the water column can lead to reduction of pH in sediment and release of phosphorus in Au-P combined with authigenic spodiosite and calcium carbonate, high content of Au-P in the sediment maybe act as a time bomb that can trigger a vicious cycle of eutrophication and large-scale harmful algal bloom in the Zhelin Bay.展开更多
This paper explored the necessity of protecting and using grasslands, grass mountains, grass slopes and grass shallows, the significance of prataculture for the economic transformation and upgrading and urbanization, ...This paper explored the necessity of protecting and using grasslands, grass mountains, grass slopes and grass shallows, the significance of prataculture for the economic transformation and upgrading and urbanization, feasibility, scientificity and naturalness of landscape city construction. It was proposed that pratacultural development, construction of landscape city, agricultural, water conservancy and planning should all follow the laws of water and soil ecology, the relationship between man, water, soil, vegetation and natural environment should be handled properly, ecological balance should be kept, so as to achieve the harmony between man and nature in addition to economic development.展开更多
The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only...The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only 6. 14% of the available water resources ofChina. Groundwater is over pumped (6. 53 X 10~9m^3 every year) in the regions of Beijing, Tianjin,and Hebei Province, so water supply could not meet the water demand there. The distribution of waterin Northwest China is uneven, some inland rivers and lakes are dried up, and desertification hasexpanded since river water in the upper and middle reaches is diverted for irrigation. Up to 2050,population will be up to 1. 6 X 10~9 in China, and industry will be developed fast, therefore 50% ofthe water supply will be used by industry and resident, and water for agriculture will be decreasedyear by year. In the coming 50 years, water demand for agriculture will be increased by 5. 6 x10^9m^3 in the Huanghe (Yellow) River valley, and by 1. 7 x 10~9m^3 in the Northwest China. It willbe impossible for the Huanghe River to meet the water demand, because it always dried up in the coldhalf year since 1984. To avoid water shortage of agriculture in the arid regions, it is necessaryto divert water from the Changjiang (Yangtze) River in the south of China, and to use waterefficiently. It is the best way to use drip irrigation in agriculture, recycle water in industry andresident use, and control water pollution. Otherwise water shortage in the arid regions willrestrict the development of agriculture in China.展开更多
文摘The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,as agriculture represents 70%of water consumption on Earth.This consumption varies greatly according to the countries where supply chain is located.The estimation is attempted for 27 European listed companies in sectors relying on agriculture in its supply chain.A data is estimated for 22 companies,showing that indirect water consumption is much more important than direct one.Strategic questions raised through the estimation of indirect water consumption in various subsectors show the interest in this data,which represents the equivalent of Carbon Scope 3 for water issues.
文摘The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In each pond, the individuals of C. garipinus with an average weight of 6 ± 0.3 g were stocked at a density of 11 per m2. The water temperature and pH were measured during the experiment. The control fishing is carried out every month to monitor variations in the weight and size of reared individuals. The plant production is carried out in elementary plots measuring 3 m × 1.5 m. Each plot was fertilized with either: drained water from C. gariepinus rearing (DWC), poultry droppings (PD), cow dung (CD) and mineral fertilizer (NPK). Treatments are carried out in tripliqua with either river water (RW), RW + the recommended dose of NPK (RD-NPK), RW + RD-PD, RW + RD-CD, DWC, DWC + 25% RD-NPK, DWC + 50% RD-NPK, DWC + 75% RD-NPK, DWC + 25% RD-PD, DWC + 50% RD-PD, DWC + 75% RD-PD, DWC + 25% RD-CD, DWC + 50% RD-CD, DWC + 75% RD-CD. Growth parameters and yield of okra were determined. The average temperature in the rearing environment was 27.6 ± 1.5˚C and pH 7.9 ± 1.1. After six (06) months of rearing, C. gariepinus individuals reached an average weight of 850.12 ± 1.3 g and an average height of 52.44 ± 1.1 cm. The daily weight gain and specific growth rates over this period were 3.9 g per day and 2.8% per day, respectively. The treatment T1 (RW + DR-NPK) gave the highest mean collar diameter and mean plant height with 2.3 ± 0.9 cm and 61.6 ± 32 cm, respectively. In T4 (DWC), the mean height of plants was 38.8 ± 23.5 cm and mean collar diameter 1.4 ± 0.8 cm. The growth performance in T4 was comparable to that of RD-CD (T3), but different from RD-NPK (T1) and RD-PD (T2). The highest average number, average weight, average length and average diameter of fruits were noted in treatments T13 (RW + RD-75%CD) and T7 (DWC + 75% RD-NPK). The best yields were noted in T1 (RW + RD-NPK) = 10.8 ± 5.4 t·ha−1, T5 (DWC + 25% RD-NPK) = 9.2 ± 4.6 t·ha−1 and T4 (DWC) = 8.6 ± 4.3 t·ha−1 which are comparable and higher than those obtained in T2 = 5.7 ± 2.8 t·ha−1 and T3 = 7.5 ± 3.8 t·ha−1.
文摘Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.
文摘This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.
基金Supported by Science and Technology Plan of Zhejiang Province(2005C32036)National Natural Science Foundation of China(30700644)~~
文摘[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.
基金Supported by National Natural Science Foundation of China (40801227)Foundation of Key Laboratory of Aquatic Genetic Resources and Aquacul-tural Ecology,Ministry of Agriculture (KFT2006-7)~~
文摘[Objective] The aim was to establish the water quality evaluation index system for freshwater aquaculture pond.[Method] The expert survey,DELPHI,field research and other methods were used.Based on the analysis of factors influencing water quality of freshwater aquaculture pond,and the importance degree of 14 factors influencing water quality of freshwater aquaculture pond was ordered.Then,five factors were selected as index to establish the water quality evaluation index system of freshwater aquaculture with the determination for thresholds of these factors.[Result] The importance degree of water quality of freshwater aquaculture pond showed an order of Dissolved oxygenpHPhytoplankton biomassSecchi depthTotal NitrogenZooplankton biomassWater temperatureBiochemical Oxygen DemandWater colorSalinityTotal hardness;according to the value of importance degree,the dissolved oxygen,pH,secchi depth,phytoplankton biomass and total nitrogen these five factors were selected as the index system of water quality evaluation of pond.The level of water quality of freshwater aquaculture pond was divided into five,and the tolerance range of fish to each index was obtained by expert observation.[Conclusion] This study had provided a scientific basis for water quality evaluation system of freshwater aquaculture pond.
基金Supported by National Natural Science Foundation of China(40801227)Open Foundation of Key Open Laboratory of Marine and Estuarine Fishery Resources and Ecology, Ministry of Agriculture (Open-2-04-09)~~
文摘The aquaculture pond water quality was taken as research objects,based on the general analysis of factors influencing the pond water quality,the system of index estimation and assessment standard were established after sorting by importance of the factors by means of Delphi and expert investigation.In this study,index weight was confirmed according to the importance of the factors and relative membership grade of the measured values,thus and the fuzzy comprehensive evaluation model of aquaculture pond water quality was constructed,and the fuzzy comprehensive evaluation system of freshwater aquaculture pond water quality was designed and implemented.The application of this system in the assessment of aquaculture pond water quality by a company had achieved better result.
文摘The most directly expressions of the relationships between human and nature lie in the relationships between human and water,human and soil( stone),human and vegetation( plant). Water,soil and vegetation are interdependent,restricted coexisted and developed from one another,which are integrated and correlated. The history of human's survival and development on the earth is one related continuously with water,soil( stone),vegetation( plant),which involves with the protection and reasonable utilization of water,soil and vegetation resources( also known as soil and water ecological resources),and it has summarized and accumulated abundant culture concerned with the harmonious coexistence of human with water,soil and vegetation,which is the soil and water ecological culture. All peoples of China have accumulated rich soil and water ecological culture in the long term,such as integrated view of nature,nature admiring,nature praising,nature protection and reasonable utilization of nature. It is especially important and urgent in the current times to carry forward soil and water ecological culture.
基金the Shenzhen Science and Technology Projects of China (JCYJ20140417144423187 and JCYJ20130331145022339)Shenzhen Engineering Laboratory for Water Desalinization with Renewable Energy, China
文摘Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.
基金supported by the National Natural Science Foundation of China (No.20677021)the Science Foundation of Jishou University (No.jsdxkyzz200101)
文摘This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.
基金supported by the Special Fund for Forestry Research in the Public Interest,China(201304305)the National 973 Program of China(2009CB825103)the Shenzhen Science and Technology Project,China(ZYC201006170373A)
文摘Water used in agriculture consumes much energy, mainly due to pumping water for irrigation, but the water-energy nexus is always neglected in arid and semi-arid areas. Based on hydrological observation data, irrigation data and socio- economic data over the past 50 yr, this study has derived a detailed estimate of greenhouse gas (GHG) emissions from agricultural water use in the Minqin Oasis. Results show that the decreasing water supply and increasing demand for agriculture has caused severe water deficits over the past 50 yr in this region. The groundwater energy use rate rose by 76% between 1961 and 2009 because of the serious decline in groundwater levels. An increase in pump lift by an average 1 m would cause GHG emission rates to rise by around 2%. Over the past 10 yr, the GHG emissions from groundwater accounted for 65-88% of the total emissions from agricultural water. GHG emissions for diverted water varied from 0.047 to 0.074 Mt CO2e as the water input increased. Long distance conveyance and high pump lifts need more electricity input than groundwater abstraction does. Government policies have had a favorable effect on total emissions by reducing water abstraction. But groundwater depletion, exacerbated by a growing population and an expansion in arable land, remains the principal energy-water nexus challenge in the region. In response to the increasing water-energy crisis, energy-saving irrigation technology, matching to cost efficiencies, and better coordination between different infrastructural agencies could be feasible ways of rendering the water and energy sectors more sustainable over the long term.
基金Supported by the National Key Technology R&D Program of China(No.2006BAD09A01)the Science and Technology Development Project in Shandong Province(No.2010GHY10505)the Science and Technology Development Project of Yantai(No.2011049)
文摘Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the AsiaPacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia(July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling(MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their growth seasons. Future works should include quantitative determination of the contribution of epilithic biofilms to the diet of A. japonicus, potential roles of epilithic biofilms in regulating the water quality of sea cucumber ponds, and the regulation of epilithic biofilms in sea cucumber culture ponds.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金Supported by the Science and Technique Bureau of Wenzhou City(No. S2005A003).
文摘Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, which was shown to be a homogeneous polysaccharide by means of high-performance liquid chromatography. The structure of PIPt was determined by using several methods. C.,C analysis indicates that PIP1 is composed of the monosaccharides of glucose, galactose, and mannose. Their malar ratio is 3. 70: 4. 06: 1.00. The molar weight was estimated to be 17 kd via HPLC. IR, GC, partial hydrolysis with acid, pefiedate oxidation, Smith degradation, methylation, and GC-MS analysis were used for the structural analyses of PIP1. The results show that PIP1 has a small quantity of branch structure, The main glycosidic linkage of PIP1 has a β-configurafion. The main chain is made up of a large mass of glucose ( 1→3 ) and few mannose ( 1→4 ) ; the side chain is composed of glucose ( 1 →3 ) and galactose ( 1→6 ) ; the nonreduced end is composed of galactose and glucose. The side chains are branched at 6-0 of glucose( 1→3,6) and mannose(1→4,6). On an average, there are three branches among 20 residues. It is presumable that the existence of 1,3-linked Glc in the main and side chains is the main reason for its higher antitumor activity.
基金the financial support from the National Natural Science Foundation of China (91025008 and 30972421)
文摘North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying has been frequently observed, as shown by a reduction in precipitation, cutoff in riverflow, and shrinkage of lakes. This increase in drying cannot be explained by climate change alone. We propose that intensive land-use in this area in recent decades has had a significant impact. The objectives of the study are to develop a quantitative model of the concurrent processes of climate change and land-use in North China, and to estimate the relative contributions of each on the observed drying. We integrated relevant socioeconomic data, land-use data, and climate data in the model, and carried out a detailed multi-temporal (decade, year, day) analysis. Results showed that land-use has greatly changed since 1999. This change is mainly associated with an extremely important 1999 national policy of "returning farmland and grazing land to forest and grassland". We found an interesting interaction between climate change and land use policy on riverflow, runoff, and evapotranspiration. During 1970s and 1980s, climate change explained more than 80%, while the land-use change explained only 10% of the riverflow change. The relative contributions were 45 and 45% in the 1980s-1990s and 35 and 55% in the 1990s-2000s respectively for climate change and land-use change. Since the 1990s land-use change has also contributed more to runoff change than climate change. The opposite trend was found for changes in evapotranspiration. Water availability for agriculture in northern China is simultaneously stressed by extensive changes in land-use and rapid climate change. Adaptation of ecological principles, such as the "returning farmland/grazing land to forest and grassland" policy, and other adjustments of economic developmental strategies can be effective tools to mitigate the water shortage problem in northern China and promote sustainable agricultural and food development.
基金supported by the China Agriculture Research System (No. CARS-47)the Taishan Industrial Leader Talent Project of Shandong Province (No. LJNY 2015002)the Aoshan Innovation Project of Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02)
文摘In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analyze the water quality and nitrogen budget including various forms of nitrogen, microorganism and chlorophyll-a. Nitrogen budget was calculated based on feed input, shrimp harvest, water quality and renewal rate, and collection of bottom mud. Input nitrogen retained in shrimp was 23.58% and 19.10% respectively for WES and RAS, and most of nitrogen waste retained in water and bottom mud. In addition, most of nitrogen in the water of WES was TAN(21.32%) and nitrite(15.30%), while in RAS was nitrate(25.97%), which means that more than 76% of ammonia and nitrite were removed. The effect of microalgae in RAS and WES was negligible. However, bacteria played a great role in the culture system considering the highest cultivable cultivable bacterial populations in RAS and WES were 1.03×10^(10) cfu mL^(-1) and 2.92×10~9 cfu mL^(-1), respectively. Meanwhile the proportion of bacteria in nitrogen budget was 29.61% and 24.61% in RAS and WES, respectively. RAS and WES could realize shrimp high stocking culture with water consuming rate of 1.25 m^3 per kg shrimp and 3.89 m^3 per kg shrimp, and power consuming rates of 3.60 kwh per kg shrimp and 2.51 kwh per kg shrimp, respectively. This study revealed the aquatic environment and nitrogen budget of intensive shrimp farming in detail, which provided the scientific basis for improving the industrial shrimp farming.
基金supported by the National Natural Science Foundation of China (40771132)the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD15B06)+3 种基金the Australian Center for International Agricultural Research (CIM-1999-094)the Education Department of Gansu Province, China (0802-07)the Research Fund for the Doctoral Program of Higher Education of China (20106202120004)the Gansu Provincial Key Laboratory of Aridland Crop Science
文摘Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture.
基金The Major Projects of Wenzhou Medical College under contract No XNK06008the Major Marine Technology Projects of Guangdong Province under contract No A200005F02
文摘The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P) accounted for 49.2% of the TP, biological phosphorus (BP) that includes Ex-P, Fe-P, OP, and a portion of Au-P, thus accounted for 34.3% to 83.5% of the TP in the Zhelin Bay, which was within the percentage range, but with a high absolute value among the estuaries. Au-P was the most important species of phosphorus and accounted for 49.2% of the TP during the investigation. Since eutrophication in the water column can lead to reduction of pH in sediment and release of phosphorus in Au-P combined with authigenic spodiosite and calcium carbonate, high content of Au-P in the sediment maybe act as a time bomb that can trigger a vicious cycle of eutrophication and large-scale harmful algal bloom in the Zhelin Bay.
文摘This paper explored the necessity of protecting and using grasslands, grass mountains, grass slopes and grass shallows, the significance of prataculture for the economic transformation and upgrading and urbanization, feasibility, scientificity and naturalness of landscape city construction. It was proposed that pratacultural development, construction of landscape city, agricultural, water conservancy and planning should all follow the laws of water and soil ecology, the relationship between man, water, soil, vegetation and natural environment should be handled properly, ecological balance should be kept, so as to achieve the harmony between man and nature in addition to economic development.
文摘The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only 6. 14% of the available water resources ofChina. Groundwater is over pumped (6. 53 X 10~9m^3 every year) in the regions of Beijing, Tianjin,and Hebei Province, so water supply could not meet the water demand there. The distribution of waterin Northwest China is uneven, some inland rivers and lakes are dried up, and desertification hasexpanded since river water in the upper and middle reaches is diverted for irrigation. Up to 2050,population will be up to 1. 6 X 10~9 in China, and industry will be developed fast, therefore 50% ofthe water supply will be used by industry and resident, and water for agriculture will be decreasedyear by year. In the coming 50 years, water demand for agriculture will be increased by 5. 6 x10^9m^3 in the Huanghe (Yellow) River valley, and by 1. 7 x 10~9m^3 in the Northwest China. It willbe impossible for the Huanghe River to meet the water demand, because it always dried up in the coldhalf year since 1984. To avoid water shortage of agriculture in the arid regions, it is necessaryto divert water from the Changjiang (Yangtze) River in the south of China, and to use waterefficiently. It is the best way to use drip irrigation in agriculture, recycle water in industry andresident use, and control water pollution. Otherwise water shortage in the arid regions willrestrict the development of agriculture in China.