In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfiel...In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.展开更多
In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the di...In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.展开更多
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environmen...On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environment disaster chain is put forward on the basis of combination study on the disaster chain theory and pollution problem in regional water environment. Through identification and analysis of pollution disaster resources in regional water environment of the Dongjiang Lake, the annual emission of the chemical oxygen demand (COD), ammonia nitrogen, total phosphorus (TP) and heavy metal (Cd, As, Pb) are counted. According to evaluation on structure proportion of contaminants in the Dongjiang Lake, agricultural non-point source is the uppermost pollution source, which accounted for 87.74% in total pollution load. Ammonia nitrogen, TP and COD are mainly contaminants accounted for 94.27% in total pollution load. By analyzing danger of contaminants in the lake, basic form of disaster chain of water environment pollution is built elementarily. It shows characteristics of branches and trunk basin disaster chain and embodies multisource disaster implication chain caused by human activities. Then, disaster resources chain-cutting methods for pollution prevention and control of regional water environment of the Dongjiang Lake are analyzed.展开更多
Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand d...Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand dune ecosystems.To determine the influence of vegetation on the hydrological regulation function of sand dunes,we examined the deep seepage and lateral migration of dune water with different vegetation coverages during the growing season in the Horqin Sandy Land,China.The results showed that the deep seepage and lateral migration of water decreased with the increase in vegetation coverage on the dunes.The accumulated deep seepage water of mobile dunes(vegetation coverage<5%)and dunes with vegetation coverage of 18.03%,27.12%,and 50.65%accounted for 56.53%,51.82%,18.98%,and 0.26%,respectively,of the rainfall in the same period.The accumulated lateral migration of water in these dunes accounted for 12.39%,6.33%,2.23%,and 7.61%of the rainfall in the same period.The direction and position of the dune slope affected the soil water deep seepage and lateral migration process.The amounts of deep seepage and lateral migration of water on the windward slope were lower than those on the leeward slope.The amounts of deep seepage and lateral migration of water showed a decreasing trend from the bottom to the middle and to the top of the dune slope.According to the above results,during the construction of sand-control projects in sandy regions,we suggest that a certain area of mobile dunes(>13.75%)should be retained as a water resource reservoir to maintain the water balance of artificial fixed dune ecosystems.These findings provide reliable evidence for the accurate assessment of water resources within the sand dune ecosystem and guide the construction of desertification control projects.展开更多
In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics ...In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.展开更多
文摘In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.
文摘In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
文摘On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environment disaster chain is put forward on the basis of combination study on the disaster chain theory and pollution problem in regional water environment. Through identification and analysis of pollution disaster resources in regional water environment of the Dongjiang Lake, the annual emission of the chemical oxygen demand (COD), ammonia nitrogen, total phosphorus (TP) and heavy metal (Cd, As, Pb) are counted. According to evaluation on structure proportion of contaminants in the Dongjiang Lake, agricultural non-point source is the uppermost pollution source, which accounted for 87.74% in total pollution load. Ammonia nitrogen, TP and COD are mainly contaminants accounted for 94.27% in total pollution load. By analyzing danger of contaminants in the lake, basic form of disaster chain of water environment pollution is built elementarily. It shows characteristics of branches and trunk basin disaster chain and embodies multisource disaster implication chain caused by human activities. Then, disaster resources chain-cutting methods for pollution prevention and control of regional water environment of the Dongjiang Lake are analyzed.
基金This study was funded by the National Natural Science Foundation of China(31670712)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA26020104).
文摘Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand dune ecosystems.To determine the influence of vegetation on the hydrological regulation function of sand dunes,we examined the deep seepage and lateral migration of dune water with different vegetation coverages during the growing season in the Horqin Sandy Land,China.The results showed that the deep seepage and lateral migration of water decreased with the increase in vegetation coverage on the dunes.The accumulated deep seepage water of mobile dunes(vegetation coverage<5%)and dunes with vegetation coverage of 18.03%,27.12%,and 50.65%accounted for 56.53%,51.82%,18.98%,and 0.26%,respectively,of the rainfall in the same period.The accumulated lateral migration of water in these dunes accounted for 12.39%,6.33%,2.23%,and 7.61%of the rainfall in the same period.The direction and position of the dune slope affected the soil water deep seepage and lateral migration process.The amounts of deep seepage and lateral migration of water on the windward slope were lower than those on the leeward slope.The amounts of deep seepage and lateral migration of water showed a decreasing trend from the bottom to the middle and to the top of the dune slope.According to the above results,during the construction of sand-control projects in sandy regions,we suggest that a certain area of mobile dunes(>13.75%)should be retained as a water resource reservoir to maintain the water balance of artificial fixed dune ecosystems.These findings provide reliable evidence for the accurate assessment of water resources within the sand dune ecosystem and guide the construction of desertification control projects.
基金Supported by Key Project of National Water Pollution Control and Treatment Science and Technology(2014ZX07211-001)Demonstration Study on Integration Model of Environmental Public Utilities in Industrial Parks of Key Watershed(2014ZX07211-001-04)
文摘In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.