Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution charact...Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution characteristics of meteorological and geological disasters and precipitation were analyzed, and the causes of the occurrence of meteorological geological disasters and the deviation of model precipitation forecast were revealed. Besides, an objective precipitation forecast system and a forecast and early warning system of meteorological and geological disasters were established. The results show that meteorological and geological disasters and precipitation were mainly concentrated from May to October, of which continuous precipitation appeared frequently in June and September, and convective precipitation was mainly distributed in July-August;the occurrence frequency of meteorological and geological disasters was basically consistent with the distribution of accumulated precipitation and short-term heavy precipitation, and they were mainly concentrated in the southern and eastern parts of Qinghai. Meteorological and geological disasters were basically caused by heavy rain and above, and meteorological and geological disasters were divided into three types: continuous precipitation(type I), short-term heavy precipitation(type II) and mixed precipitation(type III). For type I, the early warning conditions of meteorological and geological disasters in Qinghai are as follows: if the soil volumetric water content difference between 0-10 and 10-40 cm is ≤0.03 mm^(3)/mm^(3), or the soil volumetric water content at one of the depths is ≥0.25 mm^(3)/mm^(3), the future effective precipitation reaches 8.4 mm in 1 h, 10.2 mm in 2 h, 11.5 mm in 3 h, 14.2 mm in 6 h, 17.7 mm in 12 h, and 18.2 mm in 24 h, and such warning conditions are mainly used in Yushu, Guoluo, southern Hainan, southern Huangnan and other places. For type II, when the future effective precipitation is up to 11.5 mm in 1 h, 14.9 mm in 2 h, 16.2 mm in 3 h, 19.9 mm in 6 h, 25.3 mm in 12 h, and 26.3 mm in 24 h, such precipitation thresholds are mainly used in Hainan, Huangnan, and eastern Guoluo;as it is up to 13.3 mm in 1 h, 15.5 mm in 2 h, 16.6 mm in 3 h, 19.9 mm in 6 h, 31.1 mm in 12 h, and 34.0 mm in 24 h, such precipitation thresholds are mainly used in Hehuang valley. The precipitation thresholds of type III are between type I and type II, and closer to that of type II;such precipitation thresholds are mainly used in Hainan, Huangnan, and northern Guoluo. The forecasting ability of global models for heavy rain and above was not as good as that of mesoscale numerical prediction model, and global models had a wet bias for small-scale precipitation and a dry bias for large-scale precipitation;meso-scale models had a significantly larger precipitation bias. The forecast ability of precipitation objective forecast system constructed by frequency matching and multi-model integration has improved. At the same time, the constructed grid forecast and early warning system of meteorological and geological disasters is more precise and accurate, and is of instructive significance for the forecast and early warning of meteorological and geological disasters.展开更多
基金Supported by the Project of Key Laboratory for Disaster Prevention and Mitigation of Qinghai Province (QFZ-2021-Z04)Project of Qinghai Science and Technology Department (2020-ZJ-739)Key Project of Qinghai Provincial Meteorological Bureau (QXZ2020-03)。
文摘Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution characteristics of meteorological and geological disasters and precipitation were analyzed, and the causes of the occurrence of meteorological geological disasters and the deviation of model precipitation forecast were revealed. Besides, an objective precipitation forecast system and a forecast and early warning system of meteorological and geological disasters were established. The results show that meteorological and geological disasters and precipitation were mainly concentrated from May to October, of which continuous precipitation appeared frequently in June and September, and convective precipitation was mainly distributed in July-August;the occurrence frequency of meteorological and geological disasters was basically consistent with the distribution of accumulated precipitation and short-term heavy precipitation, and they were mainly concentrated in the southern and eastern parts of Qinghai. Meteorological and geological disasters were basically caused by heavy rain and above, and meteorological and geological disasters were divided into three types: continuous precipitation(type I), short-term heavy precipitation(type II) and mixed precipitation(type III). For type I, the early warning conditions of meteorological and geological disasters in Qinghai are as follows: if the soil volumetric water content difference between 0-10 and 10-40 cm is ≤0.03 mm^(3)/mm^(3), or the soil volumetric water content at one of the depths is ≥0.25 mm^(3)/mm^(3), the future effective precipitation reaches 8.4 mm in 1 h, 10.2 mm in 2 h, 11.5 mm in 3 h, 14.2 mm in 6 h, 17.7 mm in 12 h, and 18.2 mm in 24 h, and such warning conditions are mainly used in Yushu, Guoluo, southern Hainan, southern Huangnan and other places. For type II, when the future effective precipitation is up to 11.5 mm in 1 h, 14.9 mm in 2 h, 16.2 mm in 3 h, 19.9 mm in 6 h, 25.3 mm in 12 h, and 26.3 mm in 24 h, such precipitation thresholds are mainly used in Hainan, Huangnan, and eastern Guoluo;as it is up to 13.3 mm in 1 h, 15.5 mm in 2 h, 16.6 mm in 3 h, 19.9 mm in 6 h, 31.1 mm in 12 h, and 34.0 mm in 24 h, such precipitation thresholds are mainly used in Hehuang valley. The precipitation thresholds of type III are between type I and type II, and closer to that of type II;such precipitation thresholds are mainly used in Hainan, Huangnan, and northern Guoluo. The forecasting ability of global models for heavy rain and above was not as good as that of mesoscale numerical prediction model, and global models had a wet bias for small-scale precipitation and a dry bias for large-scale precipitation;meso-scale models had a significantly larger precipitation bias. The forecast ability of precipitation objective forecast system constructed by frequency matching and multi-model integration has improved. At the same time, the constructed grid forecast and early warning system of meteorological and geological disasters is more precise and accurate, and is of instructive significance for the forecast and early warning of meteorological and geological disasters.