期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Temporal Variations of Water Discharge and Sediment Load of Huanghe River,China 被引量:4
1
作者 LIU Feng CHEN Shenliang +1 位作者 PENG Jun CHEN Guangquan 《Chinese Geographical Science》 SCIE CSCD 2012年第5期507-521,共15页
Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that t... Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000. 展开更多
关键词 water discharge sediment load empirical mode decomposition morphological changes Huanghe River China
下载PDF
GRACE-based estimates of water discharge over the Yellow River basin 被引量:4
2
作者 Qiong Li Bo Zhong +1 位作者 Zhicai Luo Chaolong Yao 《Geodesy and Geodynamics》 2016年第3期187-193,共7页
As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS... As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin. 展开更多
关键词 GRACE Gravity field model Terrestrial water storage water discharge Yellow River basin
下载PDF
Water discharge variability of Changjiang(Yangtze) and Huanghe(Yellow) Rivers and its response to climatic changes 被引量:2
3
作者 张喜林 范德江 +1 位作者 王厚杰 杨作升 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第6期1392-1405,共14页
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Liji... Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers. 展开更多
关键词 water discharge Changjiang (Yangtze) River Huanghe (Yellow) River empirical modedecomposition maximum entropy spectral analysis large-scale climate factor
下载PDF
Water discharge changes of the Changjiang River downstream Datong during dry season 被引量:2
4
作者 ZHANG Erfeng,CHEN Xiqing,WANG Xiaoli(State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期355-362,共8页
Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The... Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea. 展开更多
关键词 the Changjiang River dry season water discharge into the sea human impacts
下载PDF
Mine water discharge prediction based on least squares support vector machines 被引量:1
5
作者 GUO Xlaohui MA Xiaoping 《Mining Science and Technology》 EI CAS 2010年第5期738-742,共5页
In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio ... In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space.We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series.The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model.The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge. 展开更多
关键词 mine water discharge LS-SVM chaotic time series phase space reconstruction PREDICTION
下载PDF
Effects of water discharge on river-dominated delta growth
6
作者 Yan-Bao Zhang Yi-Ke Liu +1 位作者 Jia Yi Xue-Jian Liu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1630-1649,共20页
River-dominated deltas are commonly developed at modern bays and lakes and ancient petroliferous basins.Water discharge is an important variable at pay zone scales in river-dominated delta reservoirs,which affects del... River-dominated deltas are commonly developed at modern bays and lakes and ancient petroliferous basins.Water discharge is an important variable at pay zone scales in river-dominated delta reservoirs,which affects deltaic sand distributions and evolutions.However,it's unclear how it influences riverdominated delta growth.This paper integrates Delft3 D simulations and modern analogs to analyze the effects of water discharge,considering growth time,sediment supply,and coupled effects of sediment properties.High water discharges lead to the formation of lobate deltas,and the water discharge of 1,000 m~3/s is a referenced threshold value.Fine-grained,highly-cohesive sediments increase the threshold values of water discharge at which the deltas become lobate from digitate,and vice versa.For the same simulation time,high water discharges favor more rugose shorelines,more distributary channels(especially secondary distributaries),and longer and wider deltas with more land areas.However,for the same sediment supply,high water discharges have few effects on shoreline roughness and the number of distributary channels. 展开更多
关键词 River-dominated delta water discharge MORPHOLOGY Distributary channel Hydrocarbon exploration
下载PDF
Multi-scale variability of water discharge and sediment load into the Bohai Sea from 1950 to 2011 被引量:6
7
作者 REN Huiru LI Guosheng +1 位作者 CUI Linlin HE Lei 《Journal of Geographical Sciences》 SCIE CSCD 2015年第1期85-100,共16页
This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water disch... This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water discharge and sediment load, data from Lijin station were analyzed, and the resonance periods were then calculated. The Mann-Kendall test, order clustering, power-spectrum, and wavelet analysis were used to observe water discharge and sediment load into the sea over the last 62 years. The most significant abrupt change in water discharge into the sea occurred in 1985, and an abrupt change in sediment load happened in the same year. Significant decreases of 64.6% and 73.8% were observed in water discharge and sediment load, respectively, before 1985. More significant abrupt changes in water discharge and sediment load were observed in 1968 and 1996. The characteristics of water discharge and sediment load into the Bohai Sea show periodic oscillation at inter-annual and decadal scales. The main periods of water discharge are 9.14 years and 3.05 years, whereas the main periods of sediment load are 10.67 years, 4.27 years, and 2.78 years. The significant resonance periods between water discharge and sediment load are observed at the following temporal scales: 2.86 years, 4.44 years, and 13.33 years. Water discharge and sediment load started to decrease after 1970 and has decreased significantly since 1985 for several reasons. Firstly, the precipitation of the Yellow River drainage area has reduced since 1970. Secondly, large-scale human activities, such as the building of reservoirs and floodgates, have increased. Thirdly, water and soil conservation have taken effect since 1985. 展开更多
关键词 water discharge sediment load resonance periods abrupt changes multi-scale periods Yellow River Bohai Sea
原文传递
Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years 被引量:7
8
作者 刘锋 陈沈良 +1 位作者 董平 彭俊 《Journal of Geographical Sciences》 SCIE CSCD 2012年第6期1013-1033,共21页
Water discharge data of the Yellow River over the past 60 years was analyzed using the continuous wavelet transform (CWT) and Mann-Kendall (MK) test methods to identify spatial and temporal variation patterns. Pot... Water discharge data of the Yellow River over the past 60 years was analyzed using the continuous wavelet transform (CWT) and Mann-Kendall (MK) test methods to identify spatial and temporal variation patterns. Potential connections between water discharge in the Yellow River Basin and El Nifio/Southern Oscillation (ENSO) were also examined by the cross wavelet and wavelet coherence methods. CWT results show that the periodic oscillations in water discharges had occurred at the temporal scales of 1-, 2- to 4-, 6- to 8- and 10- to 22-year. It was also found that at the annual timescale (1-year) the phase relations between water discharge and ENSO were indistinct probably due to the strong influence by human disturbances. However, over the longer time scales, the phase relation becomes much clearer with an anti-phase relation being found mainly at inter-annual scale (2- to 8-year) and in-phase relation at decadal scale (16- to 22-year). According to the MK test results water discharge at most stations except Tangnaihai have decreased significantly and the abrupt change occurred in the mid-1980s or the early 1990s. The changes in water discharge were found to be influenced by both climate changes and human activities. Before 1970 the change in water discharge was positively related to precipitation variations in the river basin, but after 1970 the decrease in water discharge has been largely caused by various human activities including constructions of reservoirs, water abstraction and water-soil conservation with water abstraction being the main cause. 展开更多
关键词 spatial-temporal variability water discharge Yellow River influencing factors Mann-Kendall trend test wavelet transform analysis
原文传递
Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008 被引量:6
9
作者 LIU Feng CHEN Shenliang PENG Jun CHEN Guangquan 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期1047-1061,共15页
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and the... Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), inter-annual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sediment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976. 展开更多
关键词 Yellow River water discharge and sediment load wavelet analysis multiscale variability estuarineevolution
原文传递
Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010 被引量:2
10
作者 Yun-ping YANG Yi-tian LI +1 位作者 Yong-yang FAN Jun-hong ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期331-343,共13页
In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show... In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected. 展开更多
关键词 water discharge sediment discharge seasonal change DELTA Yangtze Estuary
下载PDF
Effect of land use change on water discharge in Srepok watershed,Central Highland,Viet Nam 被引量:1
11
作者 Nguyen Thi Ngoc Quyen Nguyen Duy Liem Nguyen Kim Loi 《International Soil and Water Conservation Research》 SCIE 2014年第3期74-86,共13页
Srepok watershed plays an important role in Central Highland in Viet Nam.It impacts to developing social-economic conditions.Therefore,it is necessary to research elements which impact to natural resources in this wat... Srepok watershed plays an important role in Central Highland in Viet Nam.It impacts to developing social-economic conditions.Therefore,it is necessary to research elements which impact to natural resources in this watershed.The Soil and Water Assessment Tool(SWAT)model and Geography Information System(GIS)were used to simulate water discharge in the Srepok watershed.The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then,we assessed land use change which impacted on water discharge in the watershed.The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009.After using SWAT-CUP software to calibration,NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station.After that,land cover in 2010 was processed like land cover in 2000 and set up SWAT model again.The simulated water discharge in scenario 1(land use 2000)was compared with scenario 2(land use 2010),the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge.However,the effect of land cover on water resource could be seen clearly via total water yield.The percentage of surface flow in 2000 was twice times more than in 2010;retard and base flow in 2000 was slightly more than in 2010.Therefore,decreased surface flow,increased infiltration capacity of water and enriched base flow resulted in the growth of land cover. 展开更多
关键词 water discharge Land use change GIS SWAT model Simulations
原文传递
Removal of adhesive dusts from flue gas using corona discharges with spraying water 被引量:11
12
作者 XU De\|xuan, ZHAO Jian\|wei, DING Yun\|zheng, GE Wei\|li (Department of Environmental Science and Engineering, Northeast Normal University, Changchun 130024, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第4期554-561,共8页
Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuratio... Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice. 展开更多
关键词 aerosol with adhesive dusts corona discharges with spraying water electrostatic precipitation
下载PDF
Pulsed high-current discharge in water:adiabatic model of expanding plasma channel and acoustic wave 被引量:1
13
作者 A KOZYREV A ZHERLITSYN N SEMENIUK 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第3期123-129,共7页
This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium.A discharge with a current amplitude of 10 kA,a dur... This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium.A discharge with a current amplitude of 10 kA,a duration of 400 ns,and an amplitude pulsed power of 280 MW in water at atmospheric pressure created an expanding acoustic wave with an amplitude of more than 100 MPa.To describe the formation of the discharge channel,an isothermal plasma model has been developed,which made it possible to calculate both the expansion dynamics of a high-current channel and the strong acoustic wave generated by it.Our calculations show that the number density of plasma in the channel reaches 10^(20) cm^(-3),while the degree of water vapor ionization is about 10%,and the channel wall extends with a velocity of 500 m s^(−1).The calculations for the acoustic wave are in good agreement with measurements. 展开更多
关键词 plasma applications electrical discharge in water dense plasma channel
下载PDF
Discharge water temperature assessment of thermal power plantusing remote sensing techniques 被引量:1
14
作者 Priyom Roy Ivaturi N.Rao +1 位作者 Tapas Ranjan Martha K.Vinod Kumar 《Energy Geoscience》 2022年第2期172-181,共10页
Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of th... Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations. 展开更多
关键词 discharge water Thermal power plant Ambient temperature Landsat 8 Seawater pollution
下载PDF
Analytical Monitoring of the Chemicals Present in the Discharge Water Generated by the Surface Treatment Industry 被引量:1
15
作者 Nadia Morin-Crini Coline Druart +2 位作者 Sophie Gavoille Celine Lagarrigue Gregorio Crini 《Journal of Environmental Protection》 2013年第7期53-60,共8页
Industrial discharge water, and especially that from the surface treatment industry (ST), contains non-negligible amounts of pollutants even though the legislation is fully respected. In spite of this, no detailed stu... Industrial discharge water, and especially that from the surface treatment industry (ST), contains non-negligible amounts of pollutants even though the legislation is fully respected. In spite of this, no detailed studies list the exact chemical composition of these effluents. The present study reports the results of analyses performed over a 6-month period involving 15 standard water parameters. Over 160 substances including 33 metals, 58 volatile organic compounds (VOCs), 16 polycyclic aromatic hydrocarbons (PAHs), 24 chlorophenols (CPs), 16 alkylphenols (APs), 5 chloroanilines (CAs) and 7 polychlorobiphenyls (PCBs) were monitored. The industrial effluents presented polycontamination involving metals, minerals and organics with a high degree of qualitative and quantitative variability. Of the 160 substances monitored, 46 were regularly found: 25 inorganics including 8 metals (Co, Cr, Cu, Fe, Ni, Pb, Sn, Zn) and 21 organics (4 PAHs, 10 VOCs, 4 CPs and 3 APs). Eighteen were systematically presented at quantifiable levels. 展开更多
关键词 discharge water Metal-Finishing Industry Hazardous Substances Analytical Monitoring
下载PDF
Chemical substances present in discharge water generated by laundry industry:Analytical monitoring
16
作者 Dario Lacalamita Chiara Mongioví Grégorio Crini 《Water Science and Engineering》 EI CAS CSCD 2023年第4期324-332,共9页
To our knowledge,precise data concerning the pollution in terms of qualitative and quantitative fluctuations in discharge water from the laundry sector have seldom been reported.This study investigated the chemical co... To our knowledge,precise data concerning the pollution in terms of qualitative and quantitative fluctuations in discharge water from the laundry sector have seldom been reported.This study investigated the chemical composition of the discharge water from a laundry industry.Over 160 chemical substances and 15 standard water parameters were monitored.The results showed that the discharge water presented both inorganic and organic polycontamination with a high degree of qualitative and quantitative variability.However,of all monitored substances,only five metals(Al,Cu,Fe,Sr,and Zn),five minerals(P,Ca,K,Na,and S),and alkylphenols were systematically present and quantifiable.For a daily average water flow of 129 m^(3),the released metal flux was 356 g/d.Substances,such as trichloromethane,brominated diphenyl ether(BDE)47,and fluorides,were occasionally found and quantified.Other substances,such as chlorophenols,organo-tins,and pesticides were never identified.All the samples had quantifiable levels in the chemical oxygen demand(COD),biological oxygen demand(BOD),and hydrocarbons.Only the concentrations of Zn(8.3 g/d),Cu(21.4 g/d),and BOD(57.4 g/d)were close to or above the regulatory values:74.0 g/d for Zn,9.0 g/d for Cu,and 57.0 kg/d for BOD.The data obtained from this study are useful to the choice of additional treatments for the reduction of pollutant fluxes. 展开更多
关键词 LAUNDRY discharge water Chemical analysis water parameter Chemical substance
下载PDF
Case study for investigating groundwater and the future of mountain spring discharges in Southern Italy
17
作者 Nazzareno DIODATO Gianni BELLOCCHI +1 位作者 Francesco FIORILLO Gerardo VENTAFRIDDA 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1791-1800,共10页
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action... Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030. 展开更多
关键词 Caposele(Italy) Ground water Drought Ensemble forecast Exponential smoothing Spring discharge
下载PDF
Research on the combination of discharge and water supply of Karst groundwater in Dongshan mine area,Taiyuan,Shanxi
18
《Global Geology》 1998年第1期63-63,共1页
关键词 area Research on the combination of discharge and water supply of Karst groundwater in Dongshan mine area Taiyuan Shanxi
下载PDF
Response of delta sedimentary system to variation of water and sediment in the Yellow River over past six decades 被引量:8
19
作者 PENG Jun CHEN Shenliang 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期613-627,共15页
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment ... In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997. 展开更多
关键词 Yellow River water discharge sediment load human activities DELTA
下载PDF
Filling of the Three Gorges Reservoir to the 135-m Level: Instant Effects on the Yangtze Discharge and Suspended Sediment Concentration Entering the Estuary 被引量:2
20
作者 CHU Zhongxin ZHAI Shikui ZHANG Jing DING Dong 《Journal of Ocean University of China》 SCIE CAS 2009年第3期291-295,共5页
Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 Ju... Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters. 展开更多
关键词 Three Gorges Reservoir (TGR) 135-m filling Yangtze River ESTUARY water discharge suspended sediment concentration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部