Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic s...Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.展开更多
A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilizati...A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.展开更多
文摘Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.
基金Funded by the National Natural Science Foundation of China(No.51403082)
文摘A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.