In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure ...Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.展开更多
This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest ve...This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.展开更多
Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and...Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and roughness measurements.The effect of surface roughness on floatability was investigated by adhesion force measurement system for measuring interaction forces between droplets/bubbles and coking coal surfaces with different roughness.The results showed that the contact angle decreased with increasing roughness yet the adhesion force between the water droplet and coal surface increased owing to the increased contact line and the appearance of line pinning.Maximum adhesion forces between water and surfaces were 111.70,125.48,and 136.42μN when the roughness was 0.23,0.98,and 2.79 μm,respectively.In contrast,under a liquid environment,the adhesion forces between air bubble/oil droplet and coal surfaces were decreased with increasing roughness because of the restriction by water.Maximum adhesion forces of increasing roughness were 97.14,42.76,and 17.86 μN measured at interfaces between air bubble and coal surfaces and 169.48,145.84,and 121.02 lN between oil droplet and surfaces,respectively.Decreasing roughness could be beneficial to the spreading of oil droplets and the adhesion of bubbles which is conducive to flotation separation.展开更多
Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam m...Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.展开更多
Aqueous phase layer around bubble and water droplet are two additional processes in solvent sublation. In the dynamic process of mass transfer, they are always neglected, but they are very important in the investigati...Aqueous phase layer around bubble and water droplet are two additional processes in solvent sublation. In the dynamic process of mass transfer, they are always neglected, but they are very important in the investigation of thermodynamic equilibrium. In this paper, the effect of water droplet in solvent sublation was discussed in detail, and the previous mathematical model of solvent subaltion was improved. Matlab 6.5 was used to simulate the process of water droplets, and the comparison between the previous hypothesis and the improvement in this paper showed the superiority, especially in the investigation of thermodynamic equilibrium. Moreover, the separation and concentration of the complex compound dithizone-Co(Ⅱ) from aqueous phase to n-octanol by solvent sublation also proved the improved mathematical model was reasonable.展开更多
When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this...When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.
文摘Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.
基金This work was jointly supported by the 973 Project(Grant No.2005CB321703)the National Natural Science Foundation of China(Grant No.40221503)the Chinese Academy of Sciences International Partnership Creative Group entitled"The Climate System Model Development and Application Studies".
文摘This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.
基金This work was supported by the Jiangsu Natural Science Fund-Youth Fund(BK20190639)National Nature Science Foundation of China(Nos.21978318,51904300,and 51922106)National Key R&D Program of China(2020YFC1908803).
文摘Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and roughness measurements.The effect of surface roughness on floatability was investigated by adhesion force measurement system for measuring interaction forces between droplets/bubbles and coking coal surfaces with different roughness.The results showed that the contact angle decreased with increasing roughness yet the adhesion force between the water droplet and coal surface increased owing to the increased contact line and the appearance of line pinning.Maximum adhesion forces between water and surfaces were 111.70,125.48,and 136.42μN when the roughness was 0.23,0.98,and 2.79 μm,respectively.In contrast,under a liquid environment,the adhesion forces between air bubble/oil droplet and coal surfaces were decreased with increasing roughness because of the restriction by water.Maximum adhesion forces of increasing roughness were 97.14,42.76,and 17.86 μN measured at interfaces between air bubble and coal surfaces and 169.48,145.84,and 121.02 lN between oil droplet and surfaces,respectively.Decreasing roughness could be beneficial to the spreading of oil droplets and the adhesion of bubbles which is conducive to flotation separation.
文摘Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.
文摘Aqueous phase layer around bubble and water droplet are two additional processes in solvent sublation. In the dynamic process of mass transfer, they are always neglected, but they are very important in the investigation of thermodynamic equilibrium. In this paper, the effect of water droplet in solvent sublation was discussed in detail, and the previous mathematical model of solvent subaltion was improved. Matlab 6.5 was used to simulate the process of water droplets, and the comparison between the previous hypothesis and the improvement in this paper showed the superiority, especially in the investigation of thermodynamic equilibrium. Moreover, the separation and concentration of the complex compound dithizone-Co(Ⅱ) from aqueous phase to n-octanol by solvent sublation also proved the improved mathematical model was reasonable.
基金Science and Technology Project of State Grid Corporation(GY7111053)[www.sgcc.com.cn]。
文摘When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.