[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of float...[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.展开更多
This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilizat...This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.展开更多
The evaluation of landscape water eutrophication in Zhengzhou City could provide a scientific basis for the prevention of eutrophication.By taking landscape lakes in People Park and Zijing Mountain Park as the researc...The evaluation of landscape water eutrophication in Zhengzhou City could provide a scientific basis for the prevention of eutrophication.By taking landscape lakes in People Park and Zijing Mountain Park as the research objects,and selecting seven sampling spots,GPS had been conducted every week from March to April of 2010.By making use of TLI and TSIM,the landscape water eutrophication of the two parks had been evaluated.The research results showed that the average value of TLI of sampling waters in the two parks was 66.80 and 64.74;those of TSIM was 58.61 and 59.94,respectively.It could be known that landscape water eutrophication of the two parks was moderate and should be controlled and treated in time.Finally,the paper had pointed out that it should purify waters,reduce endogenous nutritions,and control exogenous nutritions by cultivating plants.展开更多
Water eutrophication has become a worldwide environmental problem in recent years,and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication.In this paper...Water eutrophication has become a worldwide environmental problem in recent years,and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication.In this paper,recent advances in current status and major mechanisms of water eutrophication,assessment and evaluation criteria,and the influencing factors were reviewed.Water eutrophication in lakes,reservoirs,estuaries and rivers is widespread all over the world and the severity is increasing,especially in the developing countries like China.The assessment of water eutrophication has been advanced from simple individual parameters like total phosphorus,total nitrogen,etc.,to comprehensive indexes like total nutrient status index.The major influencing factors on water eutrophication include nutrient enrichment,hydrodynamics,environmental factors such as temperature,salinity,carbon dioxide,element balance,etc.,and microbial and biodiversity.The occurrence of water eutrophication is actually a complex function of all the possible influencing factors.The mechanisms of algal blooming are not fully understood and need to be further investigated.展开更多
At present,all kinds of pollutants are discharged into the landscape water body,and the landscape water body is mostly static or slow flow state. This leads to the deepening of water pollution,eutrophication,blackenin...At present,all kinds of pollutants are discharged into the landscape water body,and the landscape water body is mostly static or slow flow state. This leads to the deepening of water pollution,eutrophication,blackening of water body,and stench and flood disasters occur frequently. This makes the urban landscape water lose its ornamental value,affects the effective operation of ecological function,and will also endanger the health of residents. Reclaimed water is one of the common methods of modern landscape water,but reclaimed water contains a lot of nitrogen and phosphorus,which will make the eutrophication of water body increase,and easily lead to " algal blooms",water quality deterioration,and loss of landscape function. Therefore,understanding the current situation of landscape water eutrophication and effective prevention and control measures has become one of the water environment problems to be solved.展开更多
We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity i...We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.展开更多
The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, ...The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, consequently, accelerates the process of eutrophication. To assess relations among input, accumulation, release of P and as a consequence degrading water quality in terms of chlorophyll-a (Chl-a) in freshwater fishponds, fourteen fishponds with feed supply, nine fishponds without feed supply, and five nonfish ponds in Shaoxing Plain, southeast China were selected for comparing P accumulation in their waters and surface sediments. Surface sediment samples were collected from each pond to evaluate their total P, water soluble P, Olsen P, algal available P, and P fractions. Water samples were also collected from the ponds to measure concentrations of dissolved P and Chl-a. Total P in the sediments ranged from 0.88 to 1.73 g/kg in the fishponds with feed supply, that in the non-fish ponds ranged from 0.47 to 0.86 g/kg. Organic P, accounted for 23% to 60% of total P in the sediments, was an important P fraction and increased linearly with increasing organic matter. Long-term application of feeds resulted in increased P availability in the bottom sediments and degradation of water quality in the freshwater fishponds. Compared with non-fish ponds, sediments from the feed-supplied fishponds contained considerably higher Olsen P, algal available P, and water soluble P. Higher proportions of the labile P (NH4Cl-P) and potentially labile P (NaOH-IP) were also found in the sediments from the fishponds. High solubility of P in the sediments resulted in elevation of P and chlorophyll-a concentration in the pond water. The dissolved P concentration in the pond water increased in the order of non-fish ponds (12μg/L) 〈 fishponds without feed supply (24 μg/L) 〈 fishponds with feed supply (66 μg/L). Linear correlations between concentrations of total P, Olsen-P, algal available P, water-soluble P and P concentration in saturation extracts in the sediments and dissolved P in the pond water indicated that there was a buffering action of the sediment constituents on the dissolved P.展开更多
Recently in Nigeria, cultural eutrophication is on the increase in water bodies. Observations from land use around riverine areas are predominantly for farmland and explain the high level of phosphate from runoff duri...Recently in Nigeria, cultural eutrophication is on the increase in water bodies. Observations from land use around riverine areas are predominantly for farmland and explain the high level of phosphate from runoff during the rainy season. Increased siltation, deforestation, flooding, lumbering activities and other land use perturbation are among the causes of eutrophication. Aquatic animals usually suffer hypoxia and anoxia and the anesthetic quality of water for recreational activities, like swimming, boating and picnic is reduced. The Federal Ministry of environment (FMENV) and River Basin Authority of Nigeria should ensure that all those involved in effluent discharge into water bodies follow the established frame work and existing guidelines. Point source and non-point sources of pollution should be monitored and the adoption of mathematic model which describes the overall nutrient runoff and the catchment model suitable for describing the overall transport of water and nutrient through the river basin should be encouraged as practiced in Poland.展开更多
[Objective] The study aims to discuss the application of water hyacinths to the ecological restoration of water bodies with eutrophication through simulation experiments. [Method] In this study, water hyacinths were u...[Objective] The study aims to discuss the application of water hyacinths to the ecological restoration of water bodies with eutrophication through simulation experiments. [Method] In this study, water hyacinths were used to restore the simulated eutrophic water with green algae as the dominant algae species, and then the restoration effect of the simulated eutrophic water by water hyacinths was analyzed. [Result] In the simulation test without sediment, the peak chlorophyll concentration was 434.6 mg/m3 in the tank without water hyacinths, which decreased to 285 and 119 mg/m3 respectively in the tanks with 1 and 4 water hyacinths. In the experiment with sediment, compared with the control tank without water hyacinths, a 58% reduction in chlorophyll concentration could be observed in the tank with 4 water hyacinths planted (with a coverage of 51%). The results showed that water hyacinths could inhibit alga growth notably, but there was likely a density threshold (51% coverage), and no significant eco-restoration effect was observed in the simulated eutrophic water with too few water hyacinths planted. [Conclusion] The research could provide scientific references for the ecological restoration of eutrophic water bodies.展开更多
Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular compone...Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.展开更多
Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different a...Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.展开更多
An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equ...An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.展开更多
Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their charac...Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their characteristics applicable for treatment and control of water eutrophication from the aspects of physics, chemistry, biochemistry and environmental factors regulation, and discusses the application and development trend for relevant technologies.展开更多
Research progresses on growth characteristics,application effect and optimization technology of I. aquatica floating bed were reviewed;its application problems in eutrophication water were discussed,and its applicatio...Research progresses on growth characteristics,application effect and optimization technology of I. aquatica floating bed were reviewed;its application problems in eutrophication water were discussed,and its application prospect was forecasted.展开更多
Water is the main limiting factor in the cultivation of tomato (<i>Solanum lyco<span>persicum</span></i><span> L.) in Senegal. Thus, the selection of varieties tolerant to water st</sp...Water is the main limiting factor in the cultivation of tomato (<i>Solanum lyco<span>persicum</span></i><span> L.) in Senegal. Thus, the selection of varieties tolerant to water st</span>ress would be an alternative solution for their production. <i>In vitro </i>germination, growth, total chlorophyll and proline levels were studied in five varieties of tomato subjected to increasing osmotic pressures (0, 5, 10 and 15 kPa) thanks to the PEG-8000 incorporated in an MS/2 medium for 30 days. A strong sen<span>sitivity to water stress for <i>in vitro</i> seed germination in the <i>Rodeo</i> variety (4</span>1%) is recorded at 5 kPa and maintained at 15 kPa (20.83%) while it was only noticed at 15 kPa in the other tomato varieties. The <i>Xewel</i> and <i>Lady Nema</i> varieties obtained the smallest reductions in the number of leaves of vitroplants, with 30.79% and 27.97% at 15 kPa, respectively, and the <i>Rodeo</i> variety recorded a reduction of 35.97%. From 5 kPa, the varieties record reductions in <span>the number of secondary roots of more than 15%. The effect of osmotic pr</span>essures on decreasing the taproot height and length is not significant. The <i>Xewel </i>variety had the highest average fresh (0.483 g) and dry (0.082 g) weights of the aerial part at 15 kPa and the <i>Rodeo</i> variety </span><span style="font-family:"">had </span><span style="font-family:"">the lowest ones (0.308 g and 0.0501 g). The <i>Lady Nema</i> variety had the highest average fresh (0.171 g) and dry (0.039 g) root weights and the <i>Rodeo</i> variety</span><span style="font-family:""> had</span><span style="font-family:""> the lowest ones (0.086 and 0.020 g). The vitroplants of <i>Rodeo </i>variety recorded the highest decreases in total chlorophyll contents at all osmotic pressures and the lowest increase in proline content (53.37%) at 15 kPa. <i>A contrario</i>, the <i>Xewel</i> variety recorded the greatest increase in proline content (116.26%). Ultimately, the vitroplants of <i>Lady Nem</i>a and <i>Xewe</i>l varieties were more tolerant to water stress, the <i>Ganila </i>and<i> Mongal </i>varieties were moderately tolerant and the <i>Rodeo</i> variety was the most sensitive.展开更多
Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial s...Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial structure succession of some aerial lake water systems. The phytoplankton changed with the development of various dominant species. In this study, the dominant species at these stages were Chlorophyta in the beginning stage, Cyanophyta in the second stage, and Xanthophyta in the last stage. Seven of nine biodiversity indices (Margalef's, IE, Shannon-Wiener, Simpson's, McNaughton's, Species and Odds Measure of Diversity) showed their failure to represent the eutrophication trend, and the other two indices (Menhinick's and Monk) exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.展开更多
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to inves...The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P < 0.001), and the interaction between human disturbance activities and water conditions was also significant(P < 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil > aquaculture pond sediment > soil near the discharge outlet > rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 > 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.展开更多
In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The u...In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The undocking clearance of the HYSY 228 is smaller than 1 m;therefore,the barge shows highly nonlinear hydrodynamic characteristics,and it is difficult to be accurately simulated by numerical analysis.Thus,it is necessary to obtain the hydrodynamic characteristics and laws of the float-over barge at different water depths by using tank model test,to provide some reference and guidance for float-over operations in shallow water.展开更多
The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
基金Supported by Agricultural Science and Technology Achievements Transformation Fund Project of Science and Technology Ministry(2009GB23320484)National Spark Program Project(2010GA760003)~~
文摘[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.
文摘This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.
基金Supported by Research Subject of Henan Social Sciences Association(SKL-2011-0388)~~
文摘The evaluation of landscape water eutrophication in Zhengzhou City could provide a scientific basis for the prevention of eutrophication.By taking landscape lakes in People Park and Zijing Mountain Park as the research objects,and selecting seven sampling spots,GPS had been conducted every week from March to April of 2010.By making use of TLI and TSIM,the landscape water eutrophication of the two parks had been evaluated.The research results showed that the average value of TLI of sampling waters in the two parks was 66.80 and 64.74;those of TSIM was 58.61 and 59.94,respectively.It could be known that landscape water eutrophication of the two parks was moderate and should be controlled and treated in time.Finally,the paper had pointed out that it should purify waters,reduce endogenous nutritions,and control exogenous nutritions by cultivating plants.
基金Project supported by the Key Project from the Ministry of Education of China (No. 705824)the Project from Science and Technology Bureau of Zhejiang Province (No. 2006C13059)a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in part
文摘Water eutrophication has become a worldwide environmental problem in recent years,and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication.In this paper,recent advances in current status and major mechanisms of water eutrophication,assessment and evaluation criteria,and the influencing factors were reviewed.Water eutrophication in lakes,reservoirs,estuaries and rivers is widespread all over the world and the severity is increasing,especially in the developing countries like China.The assessment of water eutrophication has been advanced from simple individual parameters like total phosphorus,total nitrogen,etc.,to comprehensive indexes like total nutrient status index.The major influencing factors on water eutrophication include nutrient enrichment,hydrodynamics,environmental factors such as temperature,salinity,carbon dioxide,element balance,etc.,and microbial and biodiversity.The occurrence of water eutrophication is actually a complex function of all the possible influencing factors.The mechanisms of algal blooming are not fully understood and need to be further investigated.
基金Supported by Tianjin Science and Technology Program (17JCYBJC29800)Tianjin Science and Technology Program (16PTZSTG00020)+1 种基金Talent Project of Tianjin Agricultural UniversityTianjin Binhai New District Science and Technology Project (BHXQKJXM-SF-2018-33)
文摘At present,all kinds of pollutants are discharged into the landscape water body,and the landscape water body is mostly static or slow flow state. This leads to the deepening of water pollution,eutrophication,blackening of water body,and stench and flood disasters occur frequently. This makes the urban landscape water lose its ornamental value,affects the effective operation of ecological function,and will also endanger the health of residents. Reclaimed water is one of the common methods of modern landscape water,but reclaimed water contains a lot of nitrogen and phosphorus,which will make the eutrophication of water body increase,and easily lead to " algal blooms",water quality deterioration,and loss of landscape function. Therefore,understanding the current situation of landscape water eutrophication and effective prevention and control measures has become one of the water environment problems to be solved.
基金the Shenhuo Mining Group Co.Ltd.,China for its financial support.At the same time,we also thank the National Natural Science Foundation of China(No.40373044)the Natural Science Foundation of Jiangsu Province (No.05KJD610209) for their supportthe Jiangsu Key Laboratory of Resources and Environmental Information Engineering for its technical support.
文摘We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.
文摘The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, consequently, accelerates the process of eutrophication. To assess relations among input, accumulation, release of P and as a consequence degrading water quality in terms of chlorophyll-a (Chl-a) in freshwater fishponds, fourteen fishponds with feed supply, nine fishponds without feed supply, and five nonfish ponds in Shaoxing Plain, southeast China were selected for comparing P accumulation in their waters and surface sediments. Surface sediment samples were collected from each pond to evaluate their total P, water soluble P, Olsen P, algal available P, and P fractions. Water samples were also collected from the ponds to measure concentrations of dissolved P and Chl-a. Total P in the sediments ranged from 0.88 to 1.73 g/kg in the fishponds with feed supply, that in the non-fish ponds ranged from 0.47 to 0.86 g/kg. Organic P, accounted for 23% to 60% of total P in the sediments, was an important P fraction and increased linearly with increasing organic matter. Long-term application of feeds resulted in increased P availability in the bottom sediments and degradation of water quality in the freshwater fishponds. Compared with non-fish ponds, sediments from the feed-supplied fishponds contained considerably higher Olsen P, algal available P, and water soluble P. Higher proportions of the labile P (NH4Cl-P) and potentially labile P (NaOH-IP) were also found in the sediments from the fishponds. High solubility of P in the sediments resulted in elevation of P and chlorophyll-a concentration in the pond water. The dissolved P concentration in the pond water increased in the order of non-fish ponds (12μg/L) 〈 fishponds without feed supply (24 μg/L) 〈 fishponds with feed supply (66 μg/L). Linear correlations between concentrations of total P, Olsen-P, algal available P, water-soluble P and P concentration in saturation extracts in the sediments and dissolved P in the pond water indicated that there was a buffering action of the sediment constituents on the dissolved P.
文摘Recently in Nigeria, cultural eutrophication is on the increase in water bodies. Observations from land use around riverine areas are predominantly for farmland and explain the high level of phosphate from runoff during the rainy season. Increased siltation, deforestation, flooding, lumbering activities and other land use perturbation are among the causes of eutrophication. Aquatic animals usually suffer hypoxia and anoxia and the anesthetic quality of water for recreational activities, like swimming, boating and picnic is reduced. The Federal Ministry of environment (FMENV) and River Basin Authority of Nigeria should ensure that all those involved in effluent discharge into water bodies follow the established frame work and existing guidelines. Point source and non-point sources of pollution should be monitored and the adoption of mathematic model which describes the overall nutrient runoff and the catchment model suitable for describing the overall transport of water and nutrient through the river basin should be encouraged as practiced in Poland.
基金Supported by Scientific Research Project of Public Welfare Industry of the Ministry of Water Resources,China(201001076)
文摘[Objective] The study aims to discuss the application of water hyacinths to the ecological restoration of water bodies with eutrophication through simulation experiments. [Method] In this study, water hyacinths were used to restore the simulated eutrophic water with green algae as the dominant algae species, and then the restoration effect of the simulated eutrophic water by water hyacinths was analyzed. [Result] In the simulation test without sediment, the peak chlorophyll concentration was 434.6 mg/m3 in the tank without water hyacinths, which decreased to 285 and 119 mg/m3 respectively in the tanks with 1 and 4 water hyacinths. In the experiment with sediment, compared with the control tank without water hyacinths, a 58% reduction in chlorophyll concentration could be observed in the tank with 4 water hyacinths planted (with a coverage of 51%). The results showed that water hyacinths could inhibit alga growth notably, but there was likely a density threshold (51% coverage), and no significant eco-restoration effect was observed in the simulated eutrophic water with too few water hyacinths planted. [Conclusion] The research could provide scientific references for the ecological restoration of eutrophic water bodies.
文摘Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.
基金Supported by the National Natural Science Foundation of China under Grant No.10702016
文摘Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.
基金This work was financially supported by the National Natural Science Foundation of China
文摘An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.
基金Supported by the Project for Commission of Science and Technology of Chaoyang District in Beijing Municipality(KC1105)
文摘Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their characteristics applicable for treatment and control of water eutrophication from the aspects of physics, chemistry, biochemistry and environmental factors regulation, and discusses the application and development trend for relevant technologies.
基金Supported by the Program for Zhejiang Leading Team of S&T Innovation,China(2011R50029)Special Fund for the Construction of Modern Agricultural Industry Technology System,China(CARS-46-33)Technology Development Research Special Fund of Hangzhou Research Institute,China(20132231E04)
文摘Research progresses on growth characteristics,application effect and optimization technology of I. aquatica floating bed were reviewed;its application problems in eutrophication water were discussed,and its application prospect was forecasted.
文摘Water is the main limiting factor in the cultivation of tomato (<i>Solanum lyco<span>persicum</span></i><span> L.) in Senegal. Thus, the selection of varieties tolerant to water st</span>ress would be an alternative solution for their production. <i>In vitro </i>germination, growth, total chlorophyll and proline levels were studied in five varieties of tomato subjected to increasing osmotic pressures (0, 5, 10 and 15 kPa) thanks to the PEG-8000 incorporated in an MS/2 medium for 30 days. A strong sen<span>sitivity to water stress for <i>in vitro</i> seed germination in the <i>Rodeo</i> variety (4</span>1%) is recorded at 5 kPa and maintained at 15 kPa (20.83%) while it was only noticed at 15 kPa in the other tomato varieties. The <i>Xewel</i> and <i>Lady Nema</i> varieties obtained the smallest reductions in the number of leaves of vitroplants, with 30.79% and 27.97% at 15 kPa, respectively, and the <i>Rodeo</i> variety recorded a reduction of 35.97%. From 5 kPa, the varieties record reductions in <span>the number of secondary roots of more than 15%. The effect of osmotic pr</span>essures on decreasing the taproot height and length is not significant. The <i>Xewel </i>variety had the highest average fresh (0.483 g) and dry (0.082 g) weights of the aerial part at 15 kPa and the <i>Rodeo</i> variety </span><span style="font-family:"">had </span><span style="font-family:"">the lowest ones (0.308 g and 0.0501 g). The <i>Lady Nema</i> variety had the highest average fresh (0.171 g) and dry (0.039 g) root weights and the <i>Rodeo</i> variety</span><span style="font-family:""> had</span><span style="font-family:""> the lowest ones (0.086 and 0.020 g). The vitroplants of <i>Rodeo </i>variety recorded the highest decreases in total chlorophyll contents at all osmotic pressures and the lowest increase in proline content (53.37%) at 15 kPa. <i>A contrario</i>, the <i>Xewel</i> variety recorded the greatest increase in proline content (116.26%). Ultimately, the vitroplants of <i>Lady Nem</i>a and <i>Xewe</i>l varieties were more tolerant to water stress, the <i>Ganila </i>and<i> Mongal </i>varieties were moderately tolerant and the <i>Rodeo</i> variety was the most sensitive.
基金Sponsored by the National Basic Research Program of China (Grant No.2004CB418505)
文摘Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial structure succession of some aerial lake water systems. The phytoplankton changed with the development of various dominant species. In this study, the dominant species at these stages were Chlorophyta in the beginning stage, Cyanophyta in the second stage, and Xanthophyta in the last stage. Seven of nine biodiversity indices (Margalef's, IE, Shannon-Wiener, Simpson's, McNaughton's, Species and Odds Measure of Diversity) showed their failure to represent the eutrophication trend, and the other two indices (Menhinick's and Monk) exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.
基金Under the auspices of National Basic Research Program of China(No.2012CB956100)National Natural Science Foundation of China(No.41301085)the Key Foundation of Science and Technology Department of Fujian Province(No.2016R1032-1)
文摘The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P < 0.001), and the interaction between human disturbance activities and water conditions was also significant(P < 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil > aquaculture pond sediment > soil near the discharge outlet > rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 > 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.
文摘In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The undocking clearance of the HYSY 228 is smaller than 1 m;therefore,the barge shows highly nonlinear hydrodynamic characteristics,and it is difficult to be accurately simulated by numerical analysis.Thus,it is necessary to obtain the hydrodynamic characteristics and laws of the float-over barge at different water depths by using tank model test,to provide some reference and guidance for float-over operations in shallow water.
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.