期刊文献+
共找到3,613篇文章
< 1 2 181 >
每页显示 20 50 100
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
1
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 Tibetan plateau Climate sensitivity precipitation projection water availability projection
下载PDF
Study on the Water Balance in Three Dominant Plants with Simulated Precipitation Change in Maowusu Sandland 被引量:9
2
作者 肖春旺 周广胜 《Acta Botanica Sinica》 CSCD 2001年第1期82-88,共7页
The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global... The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global precipitation change and the appropriate relevant strategy for the sustainable development of the China dry territory, the authors have investigated the response of water balance to global precipitation change by creating an artificial control of four levels of water supply treating 3 dominant plants in Mauwusu sandland. The results showed that the seasonal changes of water storage and moisture of different sandland layer depths were affected by different water supply treatments and different plants. The water storage of the three plant growing sandlands and the moisture of different sandland layer depths increased as water supply was increased. The moisture of different water supply treatments and plants increased with the increase of sandland layer depth. The water storage and moisture of the same layer depth of Hedysarum mongolicum Turcz. growing sandland were larger than that of Salix psammophila C. Wang et Ch. Y. Yang growing sandland, which were in turn higher than that of Artemisia ordosica Krasch. growing sandland in the same water supply treatment. Water supply significantly affected the seasonal changes of evaporation and transpiration of the three plant growing sandlands. With the increased levels of water supply, viz. 157.5 mm, 315.0 mm, 472.5 mm and 630.0 mm, the total evaporation was 123.66 mm, 258.68 mm, 376.30 mm, 458.57 mm, respectively, and the total transpiration of A. ordosica was 50.80 mm, 68.93 mm, 108.39 mm, 163.36 mm, respectively, and that of S. psammophila , 47.37 mm, 68.17 mm, 93.65 mm, 135.97 mm, respectively, and that of H. mongolicum 46.73 mm, 67.37 mm, 86.07 mm, 109.64 mm, respectively. Evaporation was significantly higher than transpiration in the experiment. 展开更多
关键词 global change simulated precipitation Maowusu sandland dominant plants water balance
下载PDF
Analysis on the Contribution of Artificial Precipitation Enhancement Amount to Annual Water Resources in Liaoning
3
作者 班显秀 王吉宏 +1 位作者 胡伟 李帅彬 《Meteorological and Environmental Research》 CAS 2010年第10期69-70,100,共3页
Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed r... Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed region.And the calculation methods were developed to quantitatively determine the increase of rainfall due to artificial precipitation,and consequently ascertain the contribution of artificial rainfall amount to water resources. 展开更多
关键词 precipitation Artificial precipitation enhancement Assessment Amount of water resource China
下载PDF
Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China 被引量:13
4
作者 LIU Bingxia SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2016年第1期47-59,共13页
Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objectiv... Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objective of this study was to examine the responses of soil water dynamics under four typical vegetation types against precipitation years. Soil water contents (SWCs) were measured in 0–4.0 m profiles on a hillslope under the four vegetation types of shrub, pasture, natural fallow and crop in a re-vegetated catchment area from April to October in normal (2010), dry (2011), wet (2014) and extremely wet (2013) years. The results indicated that precipitation and vegetation types jointly controlled the soil water temporal dynamics and profile characteristics in the study region. SWCs in 0–4.0 m profiles of the four vegetation types were ranked from high to low as crop>fallow>pasture>shrub and this pattern displayed a temporal stability over the four years. In the extremely wet year, SWC changes occurred in the 0–2.0 m layer under shrub and pasture while the changes further extended to the depth of 4.0-m deep layers under fallow and crop. In the other three years, SWCs changes mainly occurred in the 0–1.0 m layer and kept relatively stable in the layers deeper than 1.0 m for all the four vegetation types. The interannual variation in soil depth of SWCs was about 0–2.0 m for shrub and pasture, about 0–3.4 m for fallow and about 0–4.0 m for crop, respectively. The dried soil layers formed at the depths of 1.0, 0.6, 1.6 and 0.7 m under shrub, and 1.0, 1.0, 2.0 and 0.9 m under pasture, respectively in 2010, 2011, 2013 and 2014. The infiltrated rainwater mostly stayed in the 0–1.0 m layer and hardly supplied to soil depth >1.0 m in normal, dry and wet years. Even in the extremely wet year of 2013, rainwater recharge depth did not exceed 2.0 m under shrub and pasture. This implied that soil desiccation was difficult to remove in normal, dry and wet years, and soil desiccation could be removed in 1.0–2.0 m soil layers even in the extremely wet year under shrub and pasture. The results indicated that the natural fallow was the best vegetation type for achieving sustainable utilization of soil water and preventing soil desiccation. 展开更多
关键词 precipitation pattern RESTORATION soil water dynamics soil desiccation vegetation type
下载PDF
Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia 被引量:9
5
作者 Ming Jun Zhang Sheng Jie Wang 《Research in Cold and Arid Regions》 CSCD 2018年第1期27-37,共11页
The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid c... The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid central Asia, stable isotope composition in precipitation has received increased attention during the past decades. This paper reviewed current knowledge of observed and simulated stable isotope ratios in precipitation across the Tianshan Mountains. The temperature effect of stable isotopes in precipitation has been widely accepted in arid central Asia and can be applied to paleoclimate reconstruction using ice cores. The seasonality of precipitation isotopically enriched in summer months and depleted in winter months is usually attributed to westerly-dominated moisture, but different trajectory paths to the northern and southern slopes of the Tianshan Mountains can still be modelled. The proportional contribution and its uncertainty of surface evaporation and transpiration to local precipitation can be estimated using the isotope approach, and transpiration plays a dominant role in recycled moisture for oasis sites. The impact of below-cloud evaporation on precipitation stable isotopes on the southern slope is usually larger than that on the northern slope. 展开更多
关键词 stable ISOTOPES precipitation water cycle TIANSHAN MOUNTAINS central Asia
下载PDF
Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean 被引量:3
6
作者 Shuang LUO Yunfei FU +2 位作者 Shengnan ZHOU Xiaofeng WANG Dongyong WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第4期359-376,共18页
The relationship between precipitation intensity and cloud water in typhoon systems remains unclear.This study combined time-and space-synchronized precipitation and spectral data obtained by the Precipitation Radar(P... The relationship between precipitation intensity and cloud water in typhoon systems remains unclear.This study combined time-and space-synchronized precipitation and spectral data obtained by the Precipitation Radar(PR)as well as the Visible and Infrared Scanner(VIRS)onboard the TRMM satellite,to overcome the limitations of precipitation properties and cloud parameters not being synchronized in previous studies.A merged dataset of near-surface rain rate(RR)and corresponding cloud water path(CWP)was established and used to analyze the potential correlation between cloud microphysical properties and precipitation,to deepen our understanding of the evolution of cloud to rain.In addition,25 collocated satellite overpasses of mature typhoon cases in the Northwest Pacific Ocean from 1998 to 2012 were obtained,and the relationships between the CWP and RR of 144515 pixels were analyzed in detail.The results show that the CWP and RR of mature typhoon systems with different precipitation types,precipitation cloud phases,and vertical depths of precipitation can be fitted by a notable sigmoid function,which may be useful for estimating CWP and parameterizing precipitation in models.Furthermore,the relationship was applied and tested with an independent sample to show that RR is a significant indicator of CWP. 展开更多
关键词 cloud water PATH convective precipitation STRATIFORM precipitation TRMM tropical cyclone
下载PDF
Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary 被引量:5
7
作者 XIE Wen-ping YANG Jing-song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期711-722,共12页
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh... To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area. 展开更多
关键词 antecedent precipitation index groundwater depth soil water content ASSESSMENT
下载PDF
Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin 被引量:20
8
作者 柳鉴容 宋献方 +3 位作者 孙晓敏 袁国富 刘鑫 王仕琴 《Journal of Geographical Sciences》 SCIE CSCD 2009年第2期164-174,共11页
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec... In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate. 展开更多
关键词 Arid Northwestern China (ANC) Δ^18O precipitation water vapor origin
下载PDF
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau 被引量:6
9
作者 ZHOU Tairan HAN Chun +3 位作者 QIAO Linjie REN Chaojie WEN Tao ZHAO Changming 《Journal of Arid Land》 SCIE CSCD 2021年第10期1015-1025,共11页
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact... Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content,we continuously monitored the seasonal dynamics in soil water content in four plots(natural grassland,Caragana korshinskii,Armeniaca sibirica and Pinus tabulaeformis)in Chinese Loess Plateau.The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth,showing obvious seasonal variations.Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland,and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm.Spring and autumn are the key seasons for replenishment of soil water by precipitation.Changes in soil water content are affected by precipitation,vegetation types,soil evaporation and other factors.The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area.Due to artificial vegetation plantation in this area,soil will face a water deficit crisis in the future. 展开更多
关键词 soil water content vegetation type precipitation seasonal change EVAPORATION
下载PDF
Improvement of humidity resistance of water soluble core by precipitation method 被引量:5
10
作者 Zhang Long Li Yuancai Zhao Wei 《China Foundry》 SCIE CAS 2011年第2期212-217,共6页
Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels;however,the soluble core can absorb water easily from the air at room temperature.To im... Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels;however,the soluble core can absorb water easily from the air at room temperature.To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core,a precipitation method and a two-level-three-full factorial central composite design were used,respectively.The properties of the cores treated by the precipitation method were compared with that without any treatment.Through a systematical study by means of both an environmental scanning electron microscope(ESEM) and an energy dispersive X-ray(EDX) analyzer,the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration,4% water concentration and 0 min ignition time.The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity. 展开更多
关键词 water soluble core precipitation method HYGROSCOPICITY tensile strength
下载PDF
The GNSS PWV retrieval using non-observation meteorological parameters based on ERA5 and its relation with precipitation
11
作者 Weifeng Yang Zhiping Chen +2 位作者 Kaiyun Lv Pengfei Xia Tieding Lu 《Geodesy and Geodynamics》 EI CSCD 2024年第3期302-313,共12页
The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. Fi... The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. First, this article evaluated the accuracy of pressure and temperature in 68 radiosonde stations in China based on ERA5 Reanalysis data from 2015 to 2019 and compared them with GPT3model. Then, the accuracy of pressure and temperature calculated by ERA5 were estimated in 5 representative IGS stations in China. And the PWV calculated by these meteorological parameters from ERA5(ERA5-PWV) were analyzed. Finally, the relation between ERA5-PWV and precipitation was deeply explored using wavelet coherence analysis in IGS stations. These results indicate that the accuracy of pressure and temperature of ERA5 is better than the GPT3 model. In radiosonde stations, the mean BIAS and MAE of pressure and temperature in ERA5 are-0.41/1.15 hpa and-0.97/2.12 K. And the mean RMSEs are 1.35 hpa and 2.87 K, which improve 74.77% and 40.58% compared with GPT3 model. The errors of pressure and temperature of ERA5 are smaller than the GPT3 model in bjfs, hksl and wuh2, and the accuracy of ERA5-PWV is improved by 18.77% compared with the GPT3 model. In addition, there is a significant positive correlation between ERA5-PWV and precipitation. And precipitation is always associated with the sharp rise of ERA5-PWV, which provides important references for rainfall prediction. 展开更多
关键词 ERA5 GNSS precipitable water vapor precipitation Wavelet coherence analysis
下载PDF
The Influence of Airflow Transport Pathways on Precipitation during the Rainy Season in the Liupan Mountains of Northwest China
12
作者 Yujun QIU Chunsong LU +1 位作者 Zhiliang SHU Peiyun DENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2215-2229,共15页
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f... This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes. 展开更多
关键词 regional precipitation localized precipitation airflow transport water vapor flux instability energy topographic influence
下载PDF
A New Merged Product Reveals Precipitation Features over Drylands in China
13
作者 Min LUO Yuzhi LIU +5 位作者 Jie GAO Run LUO Jinxia ZHANG Ziyuan TAN Siyu CHEN Khan ALAM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2079-2091,共13页
Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with ... Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China. 展开更多
关键词 precipitation merged dataset DRYLANDS water cycle
下载PDF
Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso-βScale Heavy Precipitation Event During the 2002 Mei-Yu Season 被引量:2
14
作者 张盟 倪允琪 张福青 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期509-526,共18页
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be ass... Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves. 展开更多
关键词 GPS precipitable water vapor four-dimensional variational assimilation meso-β-scale con- vective system
下载PDF
Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains,Central Asia 被引量:2
15
作者 CHEN Haiyan CHEN Yaning +2 位作者 LI Dalong LI Weihong YANG Yuhui 《Journal of Arid Land》 SCIE CSCD 2022年第3期297-309,共13页
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing wit... Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles. 展开更多
关键词 Tianshan Mountains Manas River Basin water vapor sources of precipitation land cover precipitation stable isotopes Hybrid Single-Particle Lagrangian Integrated Trajectory
下载PDF
Variation characteristics of stable isotopes in atmospheric precipitation in Adelaide,Australia
16
作者 WANG Dizhou ZHANG Xinping +2 位作者 LIU Zhongli LI Guang GUAN Huade 《地球环境学报》 CSCD 2024年第4期641-652,共12页
Background,aim,and scope Stable isotope in water could respond sensitively to the variation of environment and be reserved in different geological archives,although they are scarce in the environment.And the methods d... Background,aim,and scope Stable isotope in water could respond sensitively to the variation of environment and be reserved in different geological archives,although they are scarce in the environment.And the methods derived from the stable isotope composition of water have been widely applied in researches on hydrometeorology,weather diagnosis,and paleoclimate reconstruction,which help well for understanding the water-cycle processes in one region.Here,it is aimed to explore the temporal changes of stable isotopes in precipitation from Adelaide,Australia and determine the influencing factors at different timescales.Materials and methods Based on the isotopic data of daily precipitation over four years collected in Adelaide,Australia,the variation characteristics of dailyδD,δ^(18)O,and dexcess in precipitation and its relationship with meteorological elements were analyzed.Results The results demonstrated the local meteoric water line(LMWL)in Adelaide,wasδD=6.38×δ^(18)O+6.68,with a gradient less than 8.There is a significant negative correlation between dailyδ^(18)O and precipitation amount or relative humidity at daily timescales in both the whole year and wither/summerhalf year(p<0.001),but a significant positive correlation between dailyδ^(18)O and temperature in the whole year and the winter half-year(p<0.001).Discussion The correlation coefficients betweenδ^(18)O and daily mean temperature didn’t show a significant positive correlation,which may be attributed to that the precipitation in Adelaide area in January was mainly influenced by strong convective weather,and the stable isotope values in precipitation were significantly negative.Furthermore,this propose was also evidenced by the results from dexcess of precipitation with larger value in the winter half-year than that in the summer half-year,which may be resulted from the precipitation events in winter are mostly influenced by oceanic water vapor,while the sources of water vapor in summer precipitation events are more complicated and influenced by strong convective weather.On the other hand,the slope and intercept of theδ^(18)O—P regression lines in the summer months(-0.41 and 0.50‰)are larger and smaller than those in the winter months(-0.22 and-2.15‰),respectively,indicating that the precipitation stable isotopes have a relatively stronger rainout effect in the summer months than in the winter months.Besides,the measured values ofδ^(18)O in daily precipitation have a good linear relationship with our simulated values ofδ^(18)O,demonstrating the established regression model could provide a reliable simulation for theδ^(18)O values in daily precipitation in Adelaide area.It’s worth noting that the precipitation events with low precipitation amount,low relative humidity and high temperature,usually had relatively small slope and intercept of MWL,implying that raindrops may be strongly affected by sub-cloud secondary evaporation in the falling process.Conclusions The variation ofδ^(18)O in daily precipitation from Adelaide region was controlled by different factors at different timescales.And the water vapor sources and the meteorological conditions of precipitation events(such as the degree of sub-cloud secondary evaporation)also played an important role on the variation ofδ^(18)O.Recommendations and perspectives Stable isotope in daily precipitation can provide more accurate information about water-cycle and atmosphere circulation,it is therefore necessary to continue to collect and analyze daily-scale precipitation data over a longer time span.The results of this study will provide the basis for the fields of hydrometeorology,meteorological diagnosis and paleoclimate reconstruction in Adelaide,Australia. 展开更多
关键词 Adelaide precipitation stable isotopes meteoric water line stepwise regression analysis
下载PDF
The Impact of Precipitation on Drinking Water Resources in the Sagarmatha National Park (Mt. Everest Region), Nepal 被引量:1
17
作者 Kirsten Ngaire Nicholsona Klaus Neumann Subodh Sharma 《Journal of Water Resource and Protection》 2019年第11期1351-1368,共18页
This study focuses on the link between precipitation, the bacteriological characteristics, and the physical parameters of drinking water sources from 2016 to 2018 in the Sagarmatha National Park (Mt. Everest region), ... This study focuses on the link between precipitation, the bacteriological characteristics, and the physical parameters of drinking water sources from 2016 to 2018 in the Sagarmatha National Park (Mt. Everest region), Nepal. Surface water shows a positive correlation between bacteria content, altitude and corresponding temperature, whereas water from springs shows no correlation between bacteria content and altitude and corresponding temperature. Correlation between precipitation data and both pH and conductivity suggests a link between drinking water quality and precipitation whereby high precipitation rates result in increased contamination of both surface water and springs used for drinking water. This data also indicates that during periods of low precipitation, water handling is likely to contribute to water contamination. These results highlight vulnerability to climate change as melting glacial ice and changing precipitation patterns are key factors for safe drinking water. 展开更多
关键词 HIMALAYA MOUNTAINS DRINKING water precipitation FECAL Contamination Climate Change
下载PDF
Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides
18
作者 Marcio Augusto Ernesto De Moraes Walter Manoel Mendes Filho +6 位作者 Rodolfo Moreda Mendes Cassiano Antonio Bortolozo Daniel Metodiev Marcio Roberto Magalhães De Andrade Harideva Marturano Egas Tatiana Sussel Gonçalves Mendes Luana Albertani Pampuch 《International Journal of Geosciences》 CAS 2024年第1期70-86,共17页
Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbaniz... Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences. 展开更多
关键词 LANDSLIDES Antecedent precipitation Index Soil Moisture Threshold water Balance
下载PDF
Integrated water vapor during active and break spells of monsoon and its relationship with temperature,precipitation and precipitation efficiency over a tropical site 被引量:2
19
作者 Nirmala Bai Jadala Miriyala Sridhar +2 位作者 Gopa Dutta Mohammed Yousuf Y.K.Reddy 《Geodesy and Geodynamics》 CSCD 2022年第3期238-246,共9页
Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studie... Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studied for a tropical station Hyderabad(17.4°N,78.46°E).The data is validated with ECMWF Re-Analysis(ERA)91 level data.Relationships of IWV with other atmospheric variables like surface temperature,rain,and precipitation efficiency have been established through cross-correlation studies.A positive correlation coefficient is observed between IWV and surface temperature over two years.But the coefficient becomes negative when only summer monsoon months(June,July,August,and September)are considered.Rainfall during these months cools down the surface and could be the reason for this change in the correlation coefficient.Correlation studies between IWV-precipitation,IWVprecipitation efficiency(P.E),and precipitation-P.E show that coefficients are-0.05,-0.10 and 0.983 with 95%confidence level respectively,which proves that the efficacy of rain does not depend only on the level of water vapor.A proper dynamic mechanism is necessary to convert water vapor into the rain.The diurnal variations of IWV during active and break spells have been analyzed.The amplitudes of diurnal oscillation and its harmonics of individual spell do not show clear trends but the mean amplitudes of the break spells are approximately double than those of the active spells.The amplitudes of diurnal,semidiurnal and ter-diurnal components during break spells are 1.08 kg/m^(2),0.52 kg/m;and 0.34 kg/m;respectively.The corresponding amplitudes during active spells are 0.68 kg/m^(2),0.41 kg/m;and 0.23 kg/m;. 展开更多
关键词 precipitation efficiency Diurnal oscillation Integrated water vapor Tropical site Break spells of monsoon Active spells of monsoon
下载PDF
Effect of typhoon with extreme precipitation on mountain reservoir drinking water treatment: a case study in Ningbo, China 被引量:8
20
作者 Wei Chen Zhengxie Zhou +2 位作者 Jianrong He Hui Tao Zhigang Liu 《Chinese Journal of Population,Resources and Environment》 2017年第2期103-108,共6页
Due to frequent drinking water pollution accidents in the past decade, it is common that mountain reservoirs were used as the source of drinking water in China. However, some coastal areas frequently suffer from typho... Due to frequent drinking water pollution accidents in the past decade, it is common that mountain reservoirs were used as the source of drinking water in China. However, some coastal areas frequently suffer from typhoon with extreme precipitation, which results in the water quality deterioration of the reservoirs. The influence of typhoons with extreme precipitation on Jiaokou reservoir and the emergency treatment process of Maojiaping water treatment plant in the past three typical typhoons with extreme precipitation from the year of 2012-2015 were studied. It was found that the degradation of water quality, such as the increase of turbidity and bacteria index, may not merely appear during the events, but last for several days. Changing the dosage of water purification agent, such as coagulant and disinfectant at right time and place may be an efficient emergency water treatment process. Based on the analysis of water quality variation rule during and after the events, it was also found that emergency treatment can be fully prepared before the arrival of a typhoon with extreme precipitation. And in order to better respond to the typhoon with extreme precipitation, several suggestions are also proposed in this paper as follows: establishing vegetated buffers at right place, such as macrophanerophytes,shrub or herbage, increasing investments in infrastructure management, merging or cancelling the small-scale water treatment plants, preparing adequate water purification agent before the typhoon comes, etc. 展开更多
关键词 Typhoon with extreme precipitation mountain reservoir emergency drinking water treatment microorganisms
下载PDF
上一页 1 2 181 下一页 到第
使用帮助 返回顶部