[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism...[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism.[Method]Based on simulation experiment,the phosphorus contents in overlying water were analyzed comparatively with and without Misgurnus anguillicaudatus by the using of ion chromatography and spectrophotometry.[Result]The concentrations of total phosphorus(TP),dissolved total phosphorus(DTP)and particular phosphorus(PP)in bioturbation group had no significant differences with those in control group in initial stage of experiment,and became significantly higher than control group in middle and late stages of experiment(P<0.05). The PP/TP ratios in bioturbation group were bigger than those in control group,the increase of TP concentration in bioturbation group was mainly due to the increase of PP. The ratios of dissolved inorganic phosphorus(DIP) to DTP (DIP/DTP) were significantly bigger than those in control group in middle and late stages of experiment(P<0.05).[Conclusion]The benthic fish had bioturbation effects on phosphorus in overlying water of paddy field,which increased the available phosphorus for rice growth.展开更多
The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re...The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.展开更多
The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data i...The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data in 1950-1980, mean field water surplus or deficit on climatic, crop and cropland basis in dryland of northern China was calculated, and the pattern of field water surplus or deficit was analyzed and discussed in this paper.展开更多
The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experi- mental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation ...The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experi- mental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coeffi- cients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results.展开更多
Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influenc...Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.展开更多
Based on the observed data of soil moisture from locating experiments from 1986 to 1990, the pattern of field water circulation in dryland of northern China, where the mean annual precipitation is 300 600 mm, is stud...Based on the observed data of soil moisture from locating experiments from 1986 to 1990, the pattern of field water circulation in dryland of northern China, where the mean annual precipitation is 300 600 mm, is studied in this paper using the method of water balance. The results show that water satisfying ratio of spring seeding crops is 83.7 90.8 percent and that of winter wheat is about 70 percent in these areas; about 80 90 percent of water consumption of spring seeding crops and about 60 70 percent of water consumption of winter wheat comes from precipitation during the growing period, the rest comes from the soil water storage before the seeding period. But the available soil water is not used thoroughly, about 30 70 percent of available soil water remains unused when the crops are harvested. At the fallow period, the amount of soil water lost by evaporation is very important, which takes up 57 68 percent of precipitation in winter wheat field and 73 244 percent in field of spring seeding crops. Thus restraining soil evaporation, raising the storage ratio of natural precipitation and the soil water utilization efficiency of crops, strengthening the circulation ability of soil water by adopting efficient measures of agricultural techniques, are the main ways for exploiting and developing the potential productivity of natural precipitation in these areas.展开更多
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w...Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.展开更多
This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and ove...This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and overflow through the paddy field levee were collected from experimental paddy rice fields during rainy season cultivation. Results show that paddy field was very effective in flood reduction. More than 40% of rainfall could be stored in the paddy fields. However, the effectiveness of paddy fields in flood reduction was highly depends on the WSI technique used. Semi dry cultivation technique was the most effective one in terms of flood reduction. It retained the rainfall up to 55.7% (365 mm) of the total rainfall (636 mm) without reducing the yield. In terms of flood volume reduction, the alternate wetting and drying performed similarly with traditional continuous flooding, i.e., 37.2% and 40.8%, respectively.展开更多
Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous type...Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.展开更多
Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Expo...Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.展开更多
In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor...In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.展开更多
This article introduces experiments and researches of polysulphone ultrafiltration membrane's effect on oil field polluted water and approaches renewing oil field polluted water and approaches renewing of membrane...This article introduces experiments and researches of polysulphone ultrafiltration membrane's effect on oil field polluted water and approaches renewing oil field polluted water and approaches renewing of membrane's flux by different detergents and cleaning method. Good result has been achieved by doing experiments and the renewal rate of membrane is over 90%.展开更多
In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to ea...In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to easily observe the species and growth of domestic fish in the underwater non-uniform light field environment. First, starting from the image data collected by polarizing imaging technology, this paper uses subpixel convolution reconstruction to enhance the image, uses image translation and fill technology to build the family fish database, builds the Adam-Dropout-CNN (A-D-CNN) network model, and its convolution kernel size is 3 × 3. The maximum pooling was used for downsampling, and the discarding operation was added after the full connection layer to avoid the phenomenon of network overfitting. The adaptive motion estimation algorithm was used to solve the gradient sparse problem. The experiment shows that the recognition rate of A-D-CNN is 96.97% when the model is trained under the domestic fish image database, which solves the problem of low recognition rate and slow recognition speed of domestic fish in non-uniform light field.展开更多
Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnet...Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnetic field B ≤ 0.3 T, dB/dz ≤ 0.13 T/cm was produced by the system of permanent strip magnets. The initial sedimentation rate of the nanoparticles in water and under magnetic fields is higher for less concentrated suspensions (c0 = 0.1 g/l) than for more concentrated ones (c0 = 1 g/l). This might be connected with the formation of gel structures due to strong magnetic attraction between ferromagnetic nanoparticles. In the gravitation field, the suspensions of the particles (10 - 20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, reducing the sedimentation time down to several minutes. In a gradient magnetic field enhanced by a steel grid, sedimentation of the nanopowder (c0 = 0.1 g/l) for 180 minutes resulted in reduction of the iron concentration in water down to 0.4 mg/l. In flowing water regime, the residual iron concentration in water 0.3 mg/l is reached after 80 minutes.展开更多
The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of it...The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of its oxidation-reduction potential and oxidative properties as magnetic induction attenuated pointing to a natural decline, that testifies about the regular decreasing of internal energy of water molecules, which, in our opinion, is caused the inhibition of the germination of seeds of the highest plants, embryonic development of Planorbarius corneus and the changing of energy state of growing mediums for cell culture of mammals. It is supposed that namely the changing state of water is the main component in the effects of weakening of magnetic field on the studying bio-objects.展开更多
The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentl...The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentle from 30'to 1°30'in general.The main oil-bearing sequences can be divided into 6 sand groups and 34 layers in detail.in which the Ng°-Ng°sand groups are the main payzones in which oil in place accounts for 97.2%of the total.展开更多
[Objective] The study aimed at analyzing the dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation based on 3S technology. [Method] At semi-arid and arid areas in t...[Objective] The study aimed at analyzing the dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation based on 3S technology. [Method] At semi-arid and arid areas in the west of Jilin Province, water resource balance between the amount of oil-field water supply and ecological water requirement in the constructed wetland irrigated by oil-field water during 2001-2010 was investigated firstly. Afterwards, based on 3S technology, the partition and dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation in 2001, 2006, 2008 and 2010 were analyzed. [Result] The annual ecological water requirement of the constructed wetland from 2003 to 2010 varied from 1.62×106 to 2.24×106 m3, and the annual amount of oil-field water supply in the region changed from 2.12×106 to 2.84×106 m3, which showed that the supply amount of oil-field water could meet the basic ecological water requirement of the constructed wetland. Meanwhile, compared with 2001, the areas of water region and paddy field in 2010 increased by 2.3 and 10.0 times, and the areas of forest and marsh rose by 40.15% and 29.5.0% respectively. [Conclusion] Water shortage and ecological environment problem of arid and semi-arid areas had been improved by oil-field water irrigation.展开更多
The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the me...The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.展开更多
Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this...Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.展开更多
A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer cau...A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.展开更多
基金Supported by Human Resources and Social Security Department Students Abroad Science and Technology Activities Preferred Foundation (Human and Social Council Issued 2008-86)Talent Development Fund Project in Jilin Province (Jilin 2007-259)+6 种基金Jilin Province Science and Technology Development Project (20060577 )Technology Project Jilin Provincial Ministry of Education (20094352006113 2007169)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry ( 2005-546 )Science Foundation of Changchun Teachers University (2009002)Northeast Normal University Natural Science Foundation for Young Scholar (20050406)~~
文摘[Objective]The research aimed to investigate the bioturbation effects of benthic fish Misgurnus anguillicaudatus on phosphorus dynamic in overlying water of paddy field,as well as to explore the bioturbation mechanism.[Method]Based on simulation experiment,the phosphorus contents in overlying water were analyzed comparatively with and without Misgurnus anguillicaudatus by the using of ion chromatography and spectrophotometry.[Result]The concentrations of total phosphorus(TP),dissolved total phosphorus(DTP)and particular phosphorus(PP)in bioturbation group had no significant differences with those in control group in initial stage of experiment,and became significantly higher than control group in middle and late stages of experiment(P<0.05). The PP/TP ratios in bioturbation group were bigger than those in control group,the increase of TP concentration in bioturbation group was mainly due to the increase of PP. The ratios of dissolved inorganic phosphorus(DIP) to DTP (DIP/DTP) were significantly bigger than those in control group in middle and late stages of experiment(P<0.05).[Conclusion]The benthic fish had bioturbation effects on phosphorus in overlying water of paddy field,which increased the available phosphorus for rice growth.
基金Supported by the National Natural Science Foundation of China (No.59978020).
文摘The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.
基金The national key research project: Field water balance and its regulation techniques, water potential productivity and its prope
文摘The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data in 1950-1980, mean field water surplus or deficit on climatic, crop and cropland basis in dryland of northern China was calculated, and the pattern of field water surplus or deficit was analyzed and discussed in this paper.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 11174312
文摘The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experi- mental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coeffi- cients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results.
基金Project supported by National Natural Science Foundation of China(Grant No. 20276055)
文摘Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.
文摘Based on the observed data of soil moisture from locating experiments from 1986 to 1990, the pattern of field water circulation in dryland of northern China, where the mean annual precipitation is 300 600 mm, is studied in this paper using the method of water balance. The results show that water satisfying ratio of spring seeding crops is 83.7 90.8 percent and that of winter wheat is about 70 percent in these areas; about 80 90 percent of water consumption of spring seeding crops and about 60 70 percent of water consumption of winter wheat comes from precipitation during the growing period, the rest comes from the soil water storage before the seeding period. But the available soil water is not used thoroughly, about 30 70 percent of available soil water remains unused when the crops are harvested. At the fallow period, the amount of soil water lost by evaporation is very important, which takes up 57 68 percent of precipitation in winter wheat field and 73 244 percent in field of spring seeding crops. Thus restraining soil evaporation, raising the storage ratio of natural precipitation and the soil water utilization efficiency of crops, strengthening the circulation ability of soil water by adopting efficient measures of agricultural techniques, are the main ways for exploiting and developing the potential productivity of natural precipitation in these areas.
文摘Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.
文摘This study is conducted to investigate the function of paddy fields for flood reduction under different water saving irrigation techniques. A daily water balance component data including rainfall, percolation, and overflow through the paddy field levee were collected from experimental paddy rice fields during rainy season cultivation. Results show that paddy field was very effective in flood reduction. More than 40% of rainfall could be stored in the paddy fields. However, the effectiveness of paddy fields in flood reduction was highly depends on the WSI technique used. Semi dry cultivation technique was the most effective one in terms of flood reduction. It retained the rainfall up to 55.7% (365 mm) of the total rainfall (636 mm) without reducing the yield. In terms of flood volume reduction, the alternate wetting and drying performed similarly with traditional continuous flooding, i.e., 37.2% and 40.8%, respectively.
文摘Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.
文摘Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.
文摘In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.
文摘This article introduces experiments and researches of polysulphone ultrafiltration membrane's effect on oil field polluted water and approaches renewing oil field polluted water and approaches renewing of membrane's flux by different detergents and cleaning method. Good result has been achieved by doing experiments and the renewal rate of membrane is over 90%.
文摘In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to easily observe the species and growth of domestic fish in the underwater non-uniform light field environment. First, starting from the image data collected by polarizing imaging technology, this paper uses subpixel convolution reconstruction to enhance the image, uses image translation and fill technology to build the family fish database, builds the Adam-Dropout-CNN (A-D-CNN) network model, and its convolution kernel size is 3 × 3. The maximum pooling was used for downsampling, and the discarding operation was added after the full connection layer to avoid the phenomenon of network overfitting. The adaptive motion estimation algorithm was used to solve the gradient sparse problem. The experiment shows that the recognition rate of A-D-CNN is 96.97% when the model is trained under the domestic fish image database, which solves the problem of low recognition rate and slow recognition speed of domestic fish in non-uniform light field.
文摘Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnetic field B ≤ 0.3 T, dB/dz ≤ 0.13 T/cm was produced by the system of permanent strip magnets. The initial sedimentation rate of the nanoparticles in water and under magnetic fields is higher for less concentrated suspensions (c0 = 0.1 g/l) than for more concentrated ones (c0 = 1 g/l). This might be connected with the formation of gel structures due to strong magnetic attraction between ferromagnetic nanoparticles. In the gravitation field, the suspensions of the particles (10 - 20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, reducing the sedimentation time down to several minutes. In a gradient magnetic field enhanced by a steel grid, sedimentation of the nanopowder (c0 = 0.1 g/l) for 180 minutes resulted in reduction of the iron concentration in water down to 0.4 mg/l. In flowing water regime, the residual iron concentration in water 0.3 mg/l is reached after 80 minutes.
文摘The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of its oxidation-reduction potential and oxidative properties as magnetic induction attenuated pointing to a natural decline, that testifies about the regular decreasing of internal energy of water molecules, which, in our opinion, is caused the inhibition of the germination of seeds of the highest plants, embryonic development of Planorbarius corneus and the changing of energy state of growing mediums for cell culture of mammals. It is supposed that namely the changing state of water is the main component in the effects of weakening of magnetic field on the studying bio-objects.
文摘The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentle from 30'to 1°30'in general.The main oil-bearing sequences can be divided into 6 sand groups and 34 layers in detail.in which the Ng°-Ng°sand groups are the main payzones in which oil in place accounts for 97.2%of the total.
基金Supported by 2007 Environmental Protection Project of Jilin Provincial Department of Environmental Protection(2007-09)
文摘[Objective] The study aimed at analyzing the dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation based on 3S technology. [Method] At semi-arid and arid areas in the west of Jilin Province, water resource balance between the amount of oil-field water supply and ecological water requirement in the constructed wetland irrigated by oil-field water during 2001-2010 was investigated firstly. Afterwards, based on 3S technology, the partition and dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation in 2001, 2006, 2008 and 2010 were analyzed. [Result] The annual ecological water requirement of the constructed wetland from 2003 to 2010 varied from 1.62×106 to 2.24×106 m3, and the annual amount of oil-field water supply in the region changed from 2.12×106 to 2.84×106 m3, which showed that the supply amount of oil-field water could meet the basic ecological water requirement of the constructed wetland. Meanwhile, compared with 2001, the areas of water region and paddy field in 2010 increased by 2.3 and 10.0 times, and the areas of forest and marsh rose by 40.15% and 29.5.0% respectively. [Conclusion] Water shortage and ecological environment problem of arid and semi-arid areas had been improved by oil-field water irrigation.
基金Nature Science Fund Project in Heilongjiang Province (C2004-10)
文摘The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.
基金supported by the National Natural Science Foundation of China (Grants 11372042, 11221202, 11532009, and 11202026)
文摘Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.
文摘A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.