期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Shale gas transport in nanopores with mobile water films and water bridge 被引量:1
1
作者 Ran Li Zhangxin Chen +1 位作者 Keliu Wu Jinze Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1068-1076,共9页
Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecu... Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecules separate gas slugs. Considering water slippage, a portion of water molecules accumulates at the wall with lower mobility, while the remaining water molecules take the shape of a water bridge. Adopting foam apparent viscosity model to represent slug rheological behavior, how water bridge disturbs on gas flow capacity is estimated. The results are compared with the water–gas two phase flow model that assumes annular flow pattern as well as the single gas flow model without the consideration of water. The comparison illustrates that gas molecular movement is significantly hindered by flow space reduction and loss of gas slippage. The impact from water phase of slug flow pattern is more significant than that of annular flow pattern on gas flow capacity. It is discovered that larger nanopores improve gas flow capacity while maintaining bulk water layer thickness and increasing water bridge thickness tend to reduce gas transport ability. A better understanding of the structure and transport of water and gas molecules is conducive to figure out the specific gas–water flow behavior and predict shale gas production. 展开更多
关键词 Shale gas water bridge water film NANOPORE
下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation 被引量:1
2
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
下载PDF
Permeability evolution and gas flow in wet coal under non-equilibrium state:Considering both water swelling and process-based gas swelling 被引量:1
3
作者 Zhiyong Xiao Gang Wang +3 位作者 Changsheng Wang Yujing Jiang Feng Jiang Chengcheng Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期585-599,共15页
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d... Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed. 展开更多
关键词 Gas flow Apparent permeability water film ADSORPTION Non-equilibrium state
下载PDF
An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs 被引量:4
4
作者 Ran Li Zhangxin Chen +2 位作者 Keliu Wu Xing Hao Jinze Xu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1776-1787,共12页
The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern whe... The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern when compared with the single oil phase flow.This study proposes an analytical model to describe the water-oil two-phase flow.In this model,water slippage at the solid substrate is considered while oil slip is introduced to calculate the oil movement at the solid-oil boundary in dry conditions.It is proven that the oil flow profiles of both the two-phase model and single-phase model show parabolic shapes,but the oil flow capacity drops when water takes up the flow space and the impact of water is more significant when the pore dimension is smaller than 30 nm.Also,the oil flow velocity at a pore center is found to drop linearly given a larger water saturation in wet conditions.The effects of surface wettability and oil properties on water-oil flow are also discussed.Compared with the existing singlephase models,this model describes oil flow pattern in the wet condition with the incorporation of the influence of nanopore properties,which better predicts the oil transport in actual reservoir conditions.Water-oil relative permeability curves are also obtained to improve oil yield. 展开更多
关键词 Shale oil water films Two-phase flow NANOPORE
下载PDF
Prediction for asphalt pavement water film thickness based on artificial neural network 被引量:4
5
作者 Ma Yaolu Geng Yanfen +1 位作者 Chen Xianhua Lu Yankun 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期490-495,共6页
In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural netw... In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural network(ANN)a d two-dimensional shallow water equations based on hydrodynamic theory.Multi-factors included the rainfall intensity,pavement width,cross slope,longitudinal slope a d pavement roughness coefficient.The two-dimensional hydrodynamic method was validated by a natural rainfall event.Based on the design scheme o f Shen-Sha expressway engineering project,the limited training data obtained by the two-dimensional hydrodynamic simulation model was used to predict water film thickness.Furthermore,the distribution of the water film thickness influenced by multi-factors on the pavement was analyzed.The accuracy o f the ANN model was verified by the18sets o f data with a precision o f0.991.The simulation results indicate that the water film thickness increases from the median strip to the edge o f the pavement.The water film thickness variation is obviously influenced by rainfall intensity.Under the condition that the pavement width is20m and t e rainfall intensity is3m m/h,t e water film thickness is below10mm in the fast lane and20mm in t e lateral lane.Athough there is fluctuation due to the amount oftraining data,compared with the calculation on the basis o f the existing criterion and theory,t e ANN model exhibits a better performance for depicting the macroscopic distribution of the asphalt pavement water film. 展开更多
关键词 pavement engineering water film thickness artificial neural network hydrodynamic method prediction analysis
下载PDF
Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film 被引量:3
6
作者 贺元吉 董丽敏 杨嘉祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第2期2250-2254,共5页
In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flu... In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water, and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments. 展开更多
关键词 corona discharge plasma reactor water film
下载PDF
Initiation and Development of Water Film by Seepage 被引量:2
7
作者 LU Xiaobing CUI Peng +1 位作者 HU Kaiheng ZHANG Xuhui 《Journal of Mountain Science》 SCIE CSCD 2010年第4期361-366,共6页
When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordi... When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε). 展开更多
关键词 SLOPE SEEPAGE Debris flow water film
下载PDF
Study on water treatment effect of dispersion discharge plasma based on flowing water film electrode 被引量:1
8
作者 Wenzheng Liu Ying Bao +1 位作者 Xiaoxia Duan Jian Zhang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第10期168-178,共11页
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow di... To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment. 展开更多
关键词 water film electrode dispersive glow discharge plasma inhomogeneous electric field closed discharge space flowing water treatment
下载PDF
Heat resistance and water protection effectiveness for large single-pane fireproof glass
9
作者 邵荃 李芳 +1 位作者 陈涛 孙占辉 《Journal of Central South University》 SCIE EI CAS 2011年第6期2185-2191,共7页
The effects and heat transfer mode of water film and sprinkler system on the heat-resistant property associated with the insulation of a fireproof glass were investigated. In the experiments, fireproof glass with a si... The effects and heat transfer mode of water film and sprinkler system on the heat-resistant property associated with the insulation of a fireproof glass were investigated. In the experiments, fireproof glass with a size of 3 300 mm (height)×2 200 mm (width) ×12 mm (thickness) was exposed to an oil pool fire with a power of approximately 1.4 MW. The experimental results show that the application of the water film or sprinkler system on the glass can effectively resist the intensive heat from the fire in the test due to the absorption of latent heat. The permitted period of integrity and insulation with a water film and a sprinkler system could be extended to 60 min. It should be noted that the temperature of the glass surface Can be kept under 60℃in a 60 min test. The experimental results suggest that it is feasible to substitute fireproof glass with water film for a fireproof door as long as the water film or sprinkler system can work stably and water can cover the whole surface of the frreproof glass. 展开更多
关键词 water film sprinkler system HEAT-RESISTANCE fireproof glass fire test
下载PDF
Water film area and dust removal efficiency of string grilles:a theoretical analysis
10
作者 Hua Guo Haiqiao Wang +1 位作者 Shiqiang Chen Zhirong Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1015-1024,共10页
Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading dr... Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications. 展开更多
关键词 String grille Wetting mechanism Capillary action water film area Dust removal efficiency
下载PDF
Stable Isotopes and Chloride Applied as Soil Water Tracers for Phreatic Evaporation Experiment
11
作者 Xiaoxu Sun Jin Xu Jiansheng Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期88-96,共9页
A phreatic water evaporation experiment,without rainfall influence,was designed to study the mechanisms of soil water movement through groundwater recharge to the unsaturated zone. Soil moisture content,chloride conce... A phreatic water evaporation experiment,without rainfall influence,was designed to study the mechanisms of soil water movement through groundwater recharge to the unsaturated zone. Soil moisture content,chloride concentration,and δD and δ~18 O values of soil water were measured. Results showthat with decreasing soil moisture content,the chloride concentration of leachate( ρ_f(Cl)) in the capillary water layer decreases,whereas the ρ_f(Cl) value of the hanging and film water layers above the capillary water layer increases. With the combined δD and δ~18 O values,the soil water in the hanging and film water layers is influenced by evaporation,although a dry sand layer of 39 cm exists above the wet sand layer. The highest evaporation rate and the largest salt accumulation occur at a depth of about 39 cm in columns d,e,and f(Six polyvinyl chloride columns were assigned as column a,b,c,d,e,and f). We deduce that soil water migrates in the form of liquid water above the capillary water layer. In the experiment,a part of phreatic water consumed is used for the movement of soil water,whereas the other part is lost to evaporation. Soil water could continue migrating upward with prolonged experiment duration. 展开更多
关键词 soil water CHLORIDE stable isotope film water phreatic water evaporation
下载PDF
Measurement of thickness and heat transfer coefficient of water film out of tube in an evaporative air cooler
12
作者 CHEN Liang-cai WANG Jun 《Journal of Energy and Power Engineering》 2009年第9期36-40,共5页
Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resis... Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resistance probe on the tip of micrometer touches the surface and bottom of the film, two corresponding sudden reductions of resistance occurs, and the difference of two graduations on the micrometer displays the thickness of the film. The film thickness of eleven angles was measured in five kinds of water flows and results varies from 0.8933mm to 1.7233 mm. Mean thickness and mean heat transfer coefficient of the film out of the tube was calculated. 展开更多
关键词 thickness of water film air-cooler method of resistance measurement
下载PDF
Influence of rainfall on skid resistance performance and driving safety conditions of asphalt pavements 被引量:11
13
作者 Chen Xiaobing Wang Juntian +2 位作者 Liu Han Xu Libin Zhao Ronglong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期482-490,共9页
To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based ... To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities. 展开更多
关键词 rainfall intensity pavement transverse and longitudinal slopes skid resistance driving safety water film thickness(WFT) British pendulum number(BPN) stopping sight distance(SSD)
下载PDF
Simulation of vehicle braking behavior on wet asphalt pavement based on tire hydroplaning and frictional energy dissipation 被引量:6
14
作者 Liu Xiuyu Cao Qingqing +1 位作者 Chen Jiaying Huang Xiaoming 《Journal of Southeast University(English Edition)》 EI CAS 2018年第4期500-507,共8页
To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element ... To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element model of tire hydroplaning was established using the coupled EulerianLagrangian method,including a pneumatic tire model and a textured asphalt pavement model. Then,the frictional force on the tire-pavement interface at different speeds was calculated by the model. Based on vehicle braking mechanism and frictional energy dissipation,a calculation method for braking distance was proposed based on a three-stage braking process. The proposed method was verified by comparing the calculated hydroplaning speed and braking distance with field test results.Then,vehicle braking distances and wet friction coefficients were calculated under different conditions. The results show that thinner water film,a more complex tread pattern and higher tire inflation pressure all contribute to the vehicle braking performance; moreover, the pavement texture has obvious influence on vehicle braking behavior,especially at a high speed. The proposed method shows great effectiveness in predicting vehicle braking behavior on wet asphalt pavements. 展开更多
关键词 tire hydroplaning vehicle braking distance coupled Eulerian-Lagrangian method water film tire inflation pressure tread pattern pavement texture
下载PDF
Numerical Simulation of an Airfoil Electrothermal-Deicing-System in the Framework of a Coupled Moving-Boundary Method 被引量:3
15
作者 Miao Xin Guo Zhong Yihua Cao 《Fluid Dynamics & Materials Processing》 EI 2020年第6期1-30,共30页
A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to dropl... A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region.The method relies on a Eulerian approach(used to capture droplet dynamics)and an unsteady heat transfer model(specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach).Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary,several simulations of ice accretion,melting and shedding,runback water flow and refreezing phenomena during the electrothermal deicing process are conducted.Finally,the results are verified via comparison with experimental data.A rich set of data concerning the dynamic evolution of the distribution of surface temperature,water film height and ice shape is presented and critically discussed. 展开更多
关键词 Electrothermal deicing water film flow unsteady heat transfer ice recognition coupled moving-boundary ice shedding
下载PDF
Pyrolysis preparation of WO_3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells 被引量:2
16
作者 张金成 史成武 +3 位作者 陈军军 应超 吴妮 王茂 《Journal of Semiconductors》 EI CAS CSCD 2016年第3期32-36,共5页
The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact... The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH_3NH_3 PbI_3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm^2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment. 展开更多
关键词 WO_3 thin film ammonium metatungstate DMF/water solution pyrolysis compact layer perovskite solar cell
原文传递
Spatiotemporal distribution characteristics of bridge deck runoff
17
作者 Geng Yanfen Ke Xing Zheng Xin 《Journal of Southeast University(English Edition)》 EI CAS 2018年第4期517-523,共7页
The spatiotemporal characteristics of bridge deck runoff under a natural rainfall event are explored. The Taizhou Bridge is taken as a study case,and a hydrodynamic model based on the two-dimensional shallow water equ... The spatiotemporal characteristics of bridge deck runoff under a natural rainfall event are explored. The Taizhou Bridge is taken as a study case,and a hydrodynamic model based on the two-dimensional shallow water equations is used to analyze the runoff characteristics. The results indicate that the runoff velocity rate and depth are positively related to rainfall intensity,yet they have different response degrees to it. The inlet’s effect degree on lane water film has a positive relationship with rainfall intensity. A natural logarithm function( R^2= 0.706) can illustrate this relationship. However,the inlet’s effect degree on ponding at the curb shows a negative relationship with the rainfall intensity. A negative exponential function( R^2= 0.824) can reveal this relationship. With the decrease in the longitudinal slope SL,the ponding depth at the curb increases significantly at the bridge approach slab,whereas the lane water film thickness( WFT) is almost unchanged,but the lane WFT increases greatly at the location with the minimum longitudinal slope. It is concluded that the characteristics of the bridge deck runoff present apparent spatiotemporal differences,the inlet ’s effects on bridge deck runoff are quantitatively correlated with rainfall intensity, and the effective drainage measures are necessary for the bridge approach slab. 展开更多
关键词 two-dimensional shallow water equations bridge deck runoff spatiotemporal characteristics ponding depth water film thickness
下载PDF
Influence of Road Wetness on Tire-Pavement Rolling Resistance
18
作者 Jerzy Ejsmont Leif Sjogren +1 位作者 Beata Swieczko-Zurek Grzegorz Ronowski 《Journal of Civil Engineering and Architecture》 2015年第11期1302-1310,共9页
Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually p... Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually performed for dry road conditions. Based on the fact that roads are wet during a considerable time over the year and as part of the projects MIR/AM, ROLRES and ROSANNE, the TUG (Technical University of Gdafisk) in Poland and VTI (Swedish National Road and Transport Research Institute) in Sweden carried out trailer rolling resistance measurements on wet road surfaces to investigate water film influence on rolling resistance on different pavements. A specially-designed trailer to measure rolling resistance has been used. The test sections were both rural roads and an abandoned airfield equipped with water film sensors mounted in the pavement. Results indicate strong influence of test speed and water film depth, as well as influence of surface texture. The increase of rolling resistance on wet surfaces is caused by both hydrodynamic phenomena and cooling effect of water that decreases tire temperature thus increasing rolling resistance. 展开更多
关键词 Tires rolling resistance road wetness water film
下载PDF
Asphalt pavement water film thickness detection and prediction model:A review
19
作者 Ke Xiao Bing Hui +3 位作者 Xin Qu Hainian Wang Aboelkasim Diab Min Cao 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第3期349-367,共19页
Over the course of storm or rainfall event,water thickness builds up on road surface resulting in a loss of contact between vehicle tires and road surface and puts drivers into immediate danger especially at high spee... Over the course of storm or rainfall event,water thickness builds up on road surface resulting in a loss of contact between vehicle tires and road surface and puts drivers into immediate danger especially at high speeds.Therefore this is a considerably dangerous condition of the road and the realistic measurements and prediction model of water film thickness(WFT)on pavement surface is crucial for determining the road friction coefficient and evaluating the impact of rainfall on traffic safety.A review of the principle as well as critical evaluation of current detection methods of pavement WFT were compared for consistency and accuracy in this paper.The method selection guidelines are given for different road surface water film thickness detection requirements.This paper also introduces the latest development of WFT detection and prediction models for asphalt pavement,and gives the calculation elements and conditions of different WFT prediction models from different modeling ideas,which provides a basis for the selection and optimization of WFT models for future researchers.This article also suggests a few insights as further research directions on this topic.(1)The research can consider the influencing factors of WFT to conduct research on the delineation standard of pavement WFT.(2)In order to meet the future traffic safety dynamic early warning needs,road factors of different material types,disease conditions and linear conditions should be studied,as well as a comprehensive and accurate real-time water film thickness detection and evaluation method considering meteorological factors of rainfall timing,scale and intensity.(3)The prediction model of WFT should be further studied by the analytical method to clarify the influence of the pavement WFT on the driving safety. 展开更多
关键词 Asphalt pavement water film thickness Detection method Prediction model
原文传递
Investigation of surface textures deterioration on pavement skid-resistance using hysteresis friction models and numerical simulation method 被引量:2
20
作者 Haoyuan LUO Siyu CHEN +4 位作者 Leyi ZHU Xiyin LIU Yangzezhi ZHENG Runming ZHAO Xiaoming HUANG 《Friction》 SCIE EI CAS CSCD 2024年第4期745-779,共35页
Many rubber friction theories or some method combined theories and field-experiments are employed to evaluate the pavement skid-resistance deterioration due to the evolution of surface textures.However,these methods a... Many rubber friction theories or some method combined theories and field-experiments are employed to evaluate the pavement skid-resistance deterioration due to the evolution of surface textures.However,these methods are difficult to be implemented in the analysis of situations with multi-factor coupling and some extreme conditions.This study developed a framework to evaluate the skid-resistance deterioration of asphalt pavements.In this framework,the portable laser scanning was used to create the digital worn pavement model,and a hydroplaning finite element(FE)model for these digital worn pavements was constructed to evaluate coupling effects of the texture evolution and factors of slip ratio,slip angle,velocity and water film on braking-cornering characteristics of tire.In this study,the deterioration of skid-resistance of five typical asphalt pavements due the surface texture wear was systematically investigated by this framework.Compared with previous works,this study established the rubber friction models for each digital worn pavement considering the energy hysteresis of rubber and the power spectrum density of surface texture.And the rubber friction model was used to define the interaction behaviors between the tire and corresponding wore pavements in the FE hydroplaning model,rather than using an empirical friction model or a fixed friction coefficient. 展开更多
关键词 worn pavement skid-resistance friction coefficient textures evolution water film computer numerical simulation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部