Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomogr...Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.展开更多
The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropria...The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.展开更多
The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to cal...The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.展开更多
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity...This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.展开更多
The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in A...The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in Aomori Prefecture, Japan. The Lake Jusan is the best productive water area of the shellfish, corbicula, in Japan in 2013. Then, the lake is very important in Aomori Prefecture as corbicula's home. The change of the brackish environment influences the ecology of the corbicula shellfish, then, the shellfish harvest changes every year. Now, it is important to make clear the characteristics of the motion of salt water in the lake. In the present study, observations for the motion of the salt water going up to the lake and going down from the lake to the sea were carried out from June to September in 2015. The present study investigates the time change of the salinity distribution in a perpendicular direction and shows that the movement of the saltwater in the lake can be generated well by the theory given by Sasaki et al., 2009.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
文摘Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.
文摘The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.
文摘The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.
基金Supported by the National Natural Science Foundation of China(50974095,41174109,61104148)the National Science and Technology Major Projects(2011ZX05020-006)
文摘This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.
文摘The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in Aomori Prefecture, Japan. The Lake Jusan is the best productive water area of the shellfish, corbicula, in Japan in 2013. Then, the lake is very important in Aomori Prefecture as corbicula's home. The change of the brackish environment influences the ecology of the corbicula shellfish, then, the shellfish harvest changes every year. Now, it is important to make clear the characteristics of the motion of salt water in the lake. In the present study, observations for the motion of the salt water going up to the lake and going down from the lake to the sea were carried out from June to September in 2015. The present study investigates the time change of the salinity distribution in a perpendicular direction and shows that the movement of the saltwater in the lake can be generated well by the theory given by Sasaki et al., 2009.