This paper explores the impact of the convective action over the low-latitude region, the water vapor transport around the West Pacific subtropical high (WPSH), and its convective action on the seasonal northward jump...This paper explores the impact of the convective action over the low-latitude region, the water vapor transport around the West Pacific subtropical high (WPSH), and its convective action on the seasonal northward jump and southward withdrawal of the WPSH in summer by using the daily data set of NCEP and TBB for 1998. The research shows that in summer, the WPSH moves northward when the convection over the low-latitude tropical region intensifies and the subsidence region of the meridional vertically vertical circulation in meridional direction circulation over the region of 110?150癊 moves northward. Furthermore, as revealed by diagnostic analysis, the subtropical high moves northward after the obvious weakening of the longitudinal water vapor transport over the region around the subtropical high, but withdraws southward a pentad after the reduction of the latitudinal water vapor transport over the tropical West Pacific region. The research results show that the northward jump and southward withdrawal of the WPSH are closely related to the release of the convective latent heat at low latitudes and the water vapor transport at boundaries around WPSH and its convective action. The numerical simulation further validates the above-mentioned correlation between the variation of the action of the subtropical high and the preceding water vapor transport along with the convection characteristics.展开更多
基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和...基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和跳跃比例等参数,提高算法的全局寻优效率,对比WWCD与6种智能优化算法极值优化问题的仿真结果,验证了前者在全局求解精度和收敛速度方面的优越性。聚焦雷达信号识别问题,WWCD优化支持向量机(support vector machine,SVM)关键参数进行雷达信号识别实验。仿真结果表明,通过本算法优化SVM关键参数进行雷达信号识别,可明显提高识别效率。展开更多
基金This study is supported by the Huaihe River Basin Energy and Water Cycle Experiment and Study Project under Grant No. 49794030 and East Asian Monsoon Experiment (EAMEX) under Grant No. 2001CCB00400.
文摘This paper explores the impact of the convective action over the low-latitude region, the water vapor transport around the West Pacific subtropical high (WPSH), and its convective action on the seasonal northward jump and southward withdrawal of the WPSH in summer by using the daily data set of NCEP and TBB for 1998. The research shows that in summer, the WPSH moves northward when the convection over the low-latitude tropical region intensifies and the subsidence region of the meridional vertically vertical circulation in meridional direction circulation over the region of 110?150癊 moves northward. Furthermore, as revealed by diagnostic analysis, the subtropical high moves northward after the obvious weakening of the longitudinal water vapor transport over the region around the subtropical high, but withdraws southward a pentad after the reduction of the latitudinal water vapor transport over the tropical West Pacific region. The research results show that the northward jump and southward withdrawal of the WPSH are closely related to the release of the convective latent heat at low latitudes and the water vapor transport at boundaries around WPSH and its convective action. The numerical simulation further validates the above-mentioned correlation between the variation of the action of the subtropical high and the preceding water vapor transport along with the convection characteristics.