To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, dia...To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.展开更多
In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Ho...In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Hokkaido, Japan. The catchment’s geology is early Miocene to Pliocene sedimentary bedrock of partly high permeability, accompanied by currently active faults. Daily evapotranspiration, E, in water balance was calculated by applying the one-layer model to meteorological data in the rainfall season of 2011 and 2012, with the topographic influence on heat balance of the catchment considered. The coupling with the short-term water balance method for river runoff events allows us to estimate groundwater leaking to the other catchments through the faults and bedrock. As a result, the leakage corresponded to 50% - 80% of effective rainfall (=P - E: P, rainfall) in 2011, whereas it was lower or negative in 2012. The estimate of leakage then included variability of ca. 80%. In 2012, shallow groundwater storage seems to retain high baseflow during non-rainfall.展开更多
The positive pressure between pistonwall and piston hole of inner curve water hydraulic motor’s piston pairs is analyzed.The flow field of the piston pairs is numerically calculated and analyzed by the use of computa...The positive pressure between pistonwall and piston hole of inner curve water hydraulic motor’s piston pairs is analyzed.The flow field of the piston pairs is numerically calculated and analyzed by the use of computational fluid dynamics method.The pressure and velocity distribution of flow field at different clearance is analyzed in the paper.The results show that when the clearance is 4-8 μm,with the increase of clearance,the negative pressure and the velocity of piston chamber decrease significantly,the velocity and leakage flow of the clearance increase.However,when the clearance is 10 μm,the negative pressure and the velocity of plunger chamber increase suddenly.By comprehensive analysis,the cylinder annular clearance should be controlled to be near 8 μm.展开更多
The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and...The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and prevent them. The described methodology has been applied based on a cross-border cooperation between twin capital cities Vienna and Bratislava in the Central Europe Region within the project deWaloP (Developing Water Loss Prevention) and adopted in Bratislava Water Company (BVS) in the Slovak Republic. The paper provides a complex of simple and easily available practices for analyses of water distribution measurements bringing essential information as to the necessity to use advanced procedures to actively reduce leakage. These practices involve minimum night flows analyses, hydrodynamic pressures analyses, pinpointing of water leakages by working with valves in the water network, the methodology of setting alarm limits for measured data, as well as use of advanced practices to obtain missing topologic data. As the water infrastructure in former socialistic countries are in bad technical condition and the lack of pertinent operational data is a significant obstacle to the application of a more sophisticated methodology based on GIS and other information systems, the procedures focus on using the most simple way to evaluate and control water losses. Finally, the introduction of described methodology in Bratislava Water Company after many years of unsuccessful effort even with expensive sophisticated leakage equipment brought positive outputs and the graph line of water losses level is finally going down. The use of expensive multi-correlating equipment together with human resources on the basis of implementing the above described leakage monitoring will subsequently become more effective, as it shall pinpoint major leakages, disclosure and removal of that shall significantly contribute to the effective reduction of water losses.展开更多
Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,m...Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,many projects use artificial intelligence(Al)to detect cracks and water leakage.A novel method for water leakage inspection in shield tunnel lining that utilizes deep learning is introduced in this paper.Our proposal includes a ConvNeXt-S backbone,deconvolutional-feature pyramid network(D-FPN),spatial attention module(SPAM).and a detection head.It can extract representative features of leaking areas to aid inspection processes.To further improve the model's robustness,we innovatively use an inversed low-light enhancement method to convert normally illuminated images to low light ones and introduce them into the training samples.Validation experiments are performed,achieving the average precision(AP)score of 56.8%,which outperforms previous work by a margin of 5.7%.Visualization illustrations also support our method's practical effectiveness.展开更多
Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefindin...Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefindings, so that automated techniques should be created to increase reliability and efficiency. Pre-trainedfoundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of thispaper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakagesegmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter hassatisfactory performance, achieving 76.2 % mIoU and 77.5 % Dice. Experimental results demonstrate that ourapproach has advantages over peer studies and guarantees the integrity and safety of these vital assets whilestreamlining tunnel maintenance.展开更多
In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a hori...In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a horizontal direction, we directed our attention to the source of deep groundwater, its seepage and hydro-chemical characteristics in a typical mining area. We used a neotectonic water-control theory, chemical and isotope methods, as well as a method for analyzing dynamic groundwater conditions. The results indicate that 1) Karst water in the deep and medium parts of this mining area is recharged by vertical leakage through neotectonic fractures rather than seepage along strata from subcrop parts or surrounding flows; 2) from surface to deep leakage paths, the variation in the types of chemical groundwater agrees with the normal lixiviation water distribution rule and the age of mixed groundwater increases; 3) the water-rich zones along neotectonic fractures correspond with water-diluted zones in a hori-zontal direction; 4) the leakage coefficient and water capacity of aquifers increases during the flow process of Karst water along the antidip direction (from west to east) and 5) Karst water in shallow mining areas forms a strong runoff belt along strikes and quickly dilutes the water from deep and medium mining areas. Overall, chemical and dynamic water characteristics actually agree with in terms of the entire consideration for differences in vertical leakage and abnormalities in the zone of water chemical distribution, along a horizontal runoff direction.展开更多
An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method ...An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.展开更多
In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on p...In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.展开更多
Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter...Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.展开更多
Rising costs of production and the need for capital investment in the public water supply network in Ireland, has placed a strong emphasis on the need for water conservation and tackling the current high levels of lea...Rising costs of production and the need for capital investment in the public water supply network in Ireland, has placed a strong emphasis on the need for water conservation and tackling the current high levels of leakage (Department of the Environment, Community and Local Government, 2015) [1]. Consequently, Irish Water which is Ireland’s national water utility has had to consider various business models and supply frameworks to demonstrate value for money. This has included those successfully implemented by Scottish Water. Therefore, the aim of this study was to compare both national utility providers in terms of structure and financial performance. The results of this study showed that both utility providers differed significantly. The Utility has, indeed, tried to achieve “too much too soon” (O’Leary, 2018 [2];Donegal Now, 2016) [3]. Therefore, the initial results of this study suggest that, continuing to consider Scottish Water as the benchmark may generate unrealistic targets and expectations which in all probability may not be achieved.展开更多
This article shows the results of the project Empowering conditions for good water governance-a sustainable model: Vilanculos case study (Mozambique), co-financed by the European Community. This project had the aim...This article shows the results of the project Empowering conditions for good water governance-a sustainable model: Vilanculos case study (Mozambique), co-financed by the European Community. This project had the aim of improving sanitary conditions and increasing economic and financial sustainability of water services for the population of Vilanculos. The project has been developed and deployed with cooperation between Acque del Chiampo (an Italian water utility, near Vicenza), the University of Brescia and the Vilanculos public water service utility, Empresa Mo^ambicana de Agua (EMA). The paper reports analytical praxis for water distribution measurements, capable of providing essential data about the water network performances, to assess the eventual need for actions in order to solve possible and effective problems of the water service. These practices involve flow and pressure analyses, pinpointing of the network's criticalities and leakages by in-situ inspections along the network, managing the valves together with water service utility, as well as the use of a water distribution model to simulate the effects of the proposed interventions and specific software to automatically register bills and payments.展开更多
基金supported by the Ministry of Science and Technology of China (No.2014ZX07203-009)the Fundamental Research Funds for the Central Universitiesthe Program for New Century Excellent Talents at the University of China
文摘To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.
文摘In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Hokkaido, Japan. The catchment’s geology is early Miocene to Pliocene sedimentary bedrock of partly high permeability, accompanied by currently active faults. Daily evapotranspiration, E, in water balance was calculated by applying the one-layer model to meteorological data in the rainfall season of 2011 and 2012, with the topographic influence on heat balance of the catchment considered. The coupling with the short-term water balance method for river runoff events allows us to estimate groundwater leaking to the other catchments through the faults and bedrock. As a result, the leakage corresponded to 50% - 80% of effective rainfall (=P - E: P, rainfall) in 2011, whereas it was lower or negative in 2012. The estimate of leakage then included variability of ca. 80%. In 2012, shallow groundwater storage seems to retain high baseflow during non-rainfall.
基金Supported by the National Natural Science Foundation of China (No.51505111)China Postdoctoral Science Foundation (No.2020M681844)Zhejiang Province Postdoctoral Science Foundation (No.ZJ2020043)。
文摘The positive pressure between pistonwall and piston hole of inner curve water hydraulic motor’s piston pairs is analyzed.The flow field of the piston pairs is numerically calculated and analyzed by the use of computational fluid dynamics method.The pressure and velocity distribution of flow field at different clearance is analyzed in the paper.The results show that when the clearance is 4-8 μm,with the increase of clearance,the negative pressure and the velocity of piston chamber decrease significantly,the velocity and leakage flow of the clearance increase.However,when the clearance is 10 μm,the negative pressure and the velocity of plunger chamber increase suddenly.By comprehensive analysis,the cylinder annular clearance should be controlled to be near 8 μm.
文摘The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and prevent them. The described methodology has been applied based on a cross-border cooperation between twin capital cities Vienna and Bratislava in the Central Europe Region within the project deWaloP (Developing Water Loss Prevention) and adopted in Bratislava Water Company (BVS) in the Slovak Republic. The paper provides a complex of simple and easily available practices for analyses of water distribution measurements bringing essential information as to the necessity to use advanced procedures to actively reduce leakage. These practices involve minimum night flows analyses, hydrodynamic pressures analyses, pinpointing of water leakages by working with valves in the water network, the methodology of setting alarm limits for measured data, as well as use of advanced practices to obtain missing topologic data. As the water infrastructure in former socialistic countries are in bad technical condition and the lack of pertinent operational data is a significant obstacle to the application of a more sophisticated methodology based on GIS and other information systems, the procedures focus on using the most simple way to evaluate and control water losses. Finally, the introduction of described methodology in Bratislava Water Company after many years of unsuccessful effort even with expensive sophisticated leakage equipment brought positive outputs and the graph line of water losses level is finally going down. The use of expensive multi-correlating equipment together with human resources on the basis of implementing the above described leakage monitoring will subsequently become more effective, as it shall pinpoint major leakages, disclosure and removal of that shall significantly contribute to the effective reduction of water losses.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.62171114 and 52222810)the Fundamental Research Funds for the Central Universities(No.DUT22RC(3)099).
文摘Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,many projects use artificial intelligence(Al)to detect cracks and water leakage.A novel method for water leakage inspection in shield tunnel lining that utilizes deep learning is introduced in this paper.Our proposal includes a ConvNeXt-S backbone,deconvolutional-feature pyramid network(D-FPN),spatial attention module(SPAM).and a detection head.It can extract representative features of leaking areas to aid inspection processes.To further improve the model's robustness,we innovatively use an inversed low-light enhancement method to convert normally illuminated images to low light ones and introduce them into the training samples.Validation experiments are performed,achieving the average precision(AP)score of 56.8%,which outperforms previous work by a margin of 5.7%.Visualization illustrations also support our method's practical effectiveness.
基金funded by the National Natural Science Foundation of China(Nos.62171114,52222810)the Fundamental Research Funds for the Central Universities(No.DUT22RC(3)099).
文摘Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefindings, so that automated techniques should be created to increase reliability and efficiency. Pre-trainedfoundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of thispaper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakagesegmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter hassatisfactory performance, achieving 76.2 % mIoU and 77.5 % Dice. Experimental results demonstrate that ourapproach has advantages over peer studies and guarantees the integrity and safety of these vital assets whilestreamlining tunnel maintenance.
基金Projects 2007CB209400 supported by the National Basic Research Program of China, 5057409050634050 by the National Natural Science Foundation of China
文摘In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a horizontal direction, we directed our attention to the source of deep groundwater, its seepage and hydro-chemical characteristics in a typical mining area. We used a neotectonic water-control theory, chemical and isotope methods, as well as a method for analyzing dynamic groundwater conditions. The results indicate that 1) Karst water in the deep and medium parts of this mining area is recharged by vertical leakage through neotectonic fractures rather than seepage along strata from subcrop parts or surrounding flows; 2) from surface to deep leakage paths, the variation in the types of chemical groundwater agrees with the normal lixiviation water distribution rule and the age of mixed groundwater increases; 3) the water-rich zones along neotectonic fractures correspond with water-diluted zones in a hori-zontal direction; 4) the leakage coefficient and water capacity of aquifers increases during the flow process of Karst water along the antidip direction (from west to east) and 5) Karst water in shallow mining areas forms a strong runoff belt along strikes and quickly dilutes the water from deep and medium mining areas. Overall, chemical and dynamic water characteristics actually agree with in terms of the entire consideration for differences in vertical leakage and abnormalities in the zone of water chemical distribution, along a horizontal runoff direction.
基金Natural Science Funds for the Innovative ResearchGroup of China Under Grant No.50321803
文摘An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.
基金Supported by National Natural Science Foundation of China(No.50478094)
文摘In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.
基金supported by the Foundation for Top Talents Program of China University of Petroleum
文摘Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.
文摘Rising costs of production and the need for capital investment in the public water supply network in Ireland, has placed a strong emphasis on the need for water conservation and tackling the current high levels of leakage (Department of the Environment, Community and Local Government, 2015) [1]. Consequently, Irish Water which is Ireland’s national water utility has had to consider various business models and supply frameworks to demonstrate value for money. This has included those successfully implemented by Scottish Water. Therefore, the aim of this study was to compare both national utility providers in terms of structure and financial performance. The results of this study showed that both utility providers differed significantly. The Utility has, indeed, tried to achieve “too much too soon” (O’Leary, 2018 [2];Donegal Now, 2016) [3]. Therefore, the initial results of this study suggest that, continuing to consider Scottish Water as the benchmark may generate unrealistic targets and expectations which in all probability may not be achieved.
文摘This article shows the results of the project Empowering conditions for good water governance-a sustainable model: Vilanculos case study (Mozambique), co-financed by the European Community. This project had the aim of improving sanitary conditions and increasing economic and financial sustainability of water services for the population of Vilanculos. The project has been developed and deployed with cooperation between Acque del Chiampo (an Italian water utility, near Vicenza), the University of Brescia and the Vilanculos public water service utility, Empresa Mo^ambicana de Agua (EMA). The paper reports analytical praxis for water distribution measurements, capable of providing essential data about the water network performances, to assess the eventual need for actions in order to solve possible and effective problems of the water service. These practices involve flow and pressure analyses, pinpointing of the network's criticalities and leakages by in-situ inspections along the network, managing the valves together with water service utility, as well as the use of a water distribution model to simulate the effects of the proposed interventions and specific software to automatically register bills and payments.