期刊文献+
共找到3,372篇文章
< 1 2 169 >
每页显示 20 50 100
The Relationship between Water Resources Use Efficiency and Scientific and Technological Innovation Level: Case Study of Yangtze River Basin in China
1
作者 Guangming Yang Qingqing Gui +2 位作者 Junyue Liu Fengtai Zhang Siyi Cheng 《Journal of Environmental & Earth Sciences》 2023年第2期15-35,共21页
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an... The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development. 展开更多
关键词 water resource utilization efficiency(WUE) Scientific and technological innovation level(STI) Coupling coordination Interactive response yangtze river Basin
下载PDF
Changes of Terrestrial Water Storage in the Yellow River Basin Under Global Warming
2
作者 曾昕瑞 管晓丹 +2 位作者 陈涵 魏志敏 王国栋 《Journal of Tropical Meteorology》 SCIE 2024年第2期132-148,共17页
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r... The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research. 展开更多
关键词 terrestrial water storage melting level height surface water balance human activities Yellow river Basin
下载PDF
Anthropogenic activity,hydrological regime,and light level jointly influence temporal patterns in biosonar activity of the Yangtze finless porpoise at the junction of the Yangtze River and Poyang Lake,China
3
作者 Peng-Xiang Duan Zhi-Tao Wang +4 位作者 Tomonari Akamatsu Nick Tregenza Guang-Yu Li Ke-Xiong Wang Ding Wang 《Zoological Research》 SCIE CSCD 2023年第5期919-931,共13页
Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neopho... Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neophocaena asiaeorientalis asiaeorientalis),once commonly observed in the Yangtze River-Poyang Lake junction,is now rarely seen in the river-lake corridor.In this study,static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor.Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation,as well as environmental variables,including hydrological conditions and light levels.Over approximately three consecutive years of monitoring(2020–2022),porpoise biosonar was detected during 93%of logged days,indicating the key role of the corridor for finless porpoise conservation.In addition,porpoise clicks were recorded in 3.80%of minutes,while feeding correlated buzzes were detected in 1.23%of minutes,suggesting the potential existence of localized,small-scale migration.Furthermore,both anthropogenic and environmental variables were significantly correlated with the diel,lunar,monthly,seasonal,and annual variations in porpoise biosonar activities.During the pandemic lockdown period,porpoise sonar detection showed a significant increase.Furthermore,a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity.In addition to water level and flux,daylight and moonlight exhibited significant correlations with porpoise biosonar activities,with markedly higher detections at night and quarter moon periods.Ensuring the spatiotemporal reduction of anthropogenic activities,implementing vessel speed restrictions(e.g.,during porpoise migration and feeding),and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability. 展开更多
关键词 yangtze finless porpoises yangtze river Poyang Lake Pandemic lockdown Boat traffic Hydrological regime Light level
下载PDF
Spatio-temporal variability of terrestrial water storage in the Yangtze River Basin: Response to climate changes
4
作者 Yaoguo Wang Zhaoyang Sun +2 位作者 Qiwen Wu Jun Fang Wei Jia 《Geodesy and Geodynamics》 EI CSCD 2023年第3期201-211,共11页
The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi... The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB. 展开更多
关键词 yangtze river basin Terrestrial water storage GRACE Time-varying gravity field
下载PDF
Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors 被引量:7
5
作者 YE Xuchun XU Chong-Yu +2 位作者 LI Yunliang LI Xianghu ZHANG Qi 《Chinese Geographical Science》 SCIE CSCD 2017年第2期325-336,共12页
As one of the fastest developing regions in China, the middle-lower Yangtze River(MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level(HWL), annual lowest water level(LWL... As one of the fastest developing regions in China, the middle-lower Yangtze River(MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level(HWL), annual lowest water level(LWL) and the corresponding river discharges from three gauging stations in MLYR that covering the period 1987–2011, the current study evaluated the change characteristics of annual extreme water levels and the correlation with river discharges by using the methods of trend test, Mann-Whitney-Pettitt(MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and river discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam(TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge. 展开更多
关键词 极端水水平 浇水平分泌物关系 加倍集体分析 长江
下载PDF
Effect of Froude similitude deviation on curved channel simulations: A case study in the Middle Yangtze River
6
作者 Xiao-ting Yang Qian-qian Shang +3 位作者 Hui Xu Guo-bin Li Ya-jun Gao Qi-lin Yang 《Water Science and Engineering》 EI CAS CSCD 2023年第3期289-294,共6页
Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-w... Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-world situations.This study developed several fixed-bed river models with various curvatures to determine the effect of Froude similitude deviation on curved channel modeling.Models were constructed according to the characteristics of the Middle Yangtze River.Differences in longitudinal slope,transverse slope,and main stream line location were measured by varying Froude similitude deviation.The deviations of longitudinal slope and velocity were negligible because friction similitude was accounted for.The transverse slope varied significantly with the Froude similitude deviation,and the main stream line varied with the curvature and Froude similitude deviation.Formulae were derived to estimate the slope deviation.These analyses helped to clarify the feasibility of the method of Froude similitude deviation for curved channels. 展开更多
关键词 Fixed-bed river model Froude similitude deviation Flow movement water surface slope Middle yangtze river
下载PDF
Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications 被引量:10
7
作者 DING Tiping GAO Jianfei +5 位作者 TIAN Shihong SHI Guoyu CHEN Feng WANG Chengyu LUO Xurong HAN Dan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期276-360,共85页
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainste... The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs. 展开更多
关键词 yangtze river stable isotopes water chemistry Suspended Particulate Materials(SPM) HYDROLOGY environmental implication
下载PDF
IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY 被引量:1
8
作者 杨桂山 《Chinese Geographical Science》 SCIE CSCD 1992年第1期31-42,共12页
Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water. The implications of sea level rise for increasing salinity have been examined in the Changjiang (Yan... Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water. The implications of sea level rise for increasing salinity have been examined in the Changjiang (Yangtze) River estuary. By correlative analysis of chlorinity, discharge and tidal level and calculation of two-dimensional chlorinity, distribution of the Changjiang River estuary, the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm. The intensity of salt water intrusion in the future will be far more serious than current trend. 展开更多
关键词 sea level RISE SALT water INTRUSION chlonnity the CHANGJIANG river ESTUARY
下载PDF
Impacts of climate change on glacial water resources and hydrological cycles in the Yangtze River source region,the Qinghai-Tibetan Plateau,China:A Progress Report 被引量:2
9
作者 YongPing Shen GuoYa Wang +2 位作者 GenXu Wang JianChen Pu Xin Wang 《Research in Cold and Arid Regions》 2009年第6期475-495,共21页
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R... The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin. 展开更多
关键词 climate change glacial water resources hydrological cycles the yangtze river Source Region
下载PDF
Method and Practice on Water Function Division of the Yangtze River Region 被引量:1
10
作者 YUAN Hong-renProfessor-senior Engineer, Yangtze Valley Water Resources Protection Bureau, Wuhan 430051, China LUO Xiao-yongSenior Engineer, Yangtze Valley Water Resources Protection Bureau, Wuhan 430051, China 《人民长江》 北大核心 2002年第S1期54-57,共4页
Water function classification is to divide the waters in a basin or a region into different water function regions according to the natural features such as water resources condition, physical geographical location, e... Water function classification is to divide the waters in a basin or a region into different water function regions according to the natural features such as water resources condition, physical geographical location, environmental condition, etc. and social features such as the status quo of development and utilization, the requirement of social and economic development on water quantity and quality etc. Water function division has not ever been carried out in China and no ready-made theory and method can be complied with, in the meantime, it is a fundamental work with strong practical function. Therefore, the basic concept and theory foundation and research method are put forward on the base of summary of water resources management and developed and will be perfected in practice process of water function division. The Yangtze function zone covers the Yangtze river basin, the Lancang river basin and the rivers in the western area of the Lancang river in Southwest China. According to the technical outline of national water function division and combined with division practice of the Yangtze function zone, this paper presents the scope determination, procedure and method of water function division. 展开更多
关键词 water FUNCTION DIVISION procedure METHOD scope yangtze river
下载PDF
Artificial neural network modeling of water quality of the Yangtze River system:a case study in reaches crossing the city of Chongqing 被引量:10
11
作者 郭劲松 李哲 《Journal of Chongqing University》 CAS 2009年第1期1-9,共9页
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod... An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models. 展开更多
关键词 人工神经网络模型 水质管理 重庆市 长江 人工神经网络计算 中华人民共和国 案例 系统
下载PDF
Study of the Effects of Water Level Depression in Euphrates River on the Water Quality 被引量:3
12
作者 Ammar Harem Kamel Sadeq Oleiwi Sulaiman Ayad Sulaiby Mustaffa 《Journal of Civil Engineering and Architecture》 2013年第2期238-247,共10页
关键词 幼发拉底河 水位下降 水质 底格里斯河 伊拉克 TDS 河流域 大肠菌群
下载PDF
Variations of Terrestrial Water Storage in the Yangtze River Basin under Climate Change Scenarios 被引量:1
13
作者 MA Qian XIE Zheng-Hui ZHAO Lin-Na 《Atmospheric and Oceanic Science Letters》 2010年第6期293-298,共6页
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations ... In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin. 展开更多
关键词 长江流域 气候变化 储水量 季节性变化 交易平台 年际变化 陆相 时间序列分析
下载PDF
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River
14
作者 Juan-juan Fang Yun-ping Yang +2 位作者 Meng-lin Jia Yu-de Zhu Jian-jun Wang 《Water Science and Engineering》 EI CAS CSCD 2022年第2期114-124,共11页
Hydrological,sediment,and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975-2018 were collected,and the characteristics of low water level changes and their impacts on utilization... Hydrological,sediment,and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975-2018 were collected,and the characteristics of low water level changes and their impacts on utilization of water depth for navigation were investigated.The results showed that,during the study period,the Shashi Reach riverbed was significantly scoured and incised,with cross-sectional profiles showing overall narrowing and deepening.This indicated a strong potential to improve the water depth of the channel.The analysis of the temporal variation of in-channel topographical features showed that the Taipingkou diara underwent siltation and erosion,with its head gradually scoured and relocated downstream after 2008,and the Sanbatan diara continued to shrink and migrate leftwards.Low water levels with the same flow rate over the study period decreased.For instance,from 2003 to 2020,the water level at the Shashi hydrological station decreased to 1.37 m with a flow rate of 6000 m^(3)/s.Furthermore,the designed minimum navigable water level of the Shashi Reach was approximately 2.11m lower than the recommended level.In terms of utilization of the channel water depth,continuous scouring of the river channel is expected to result in a reduction in discharge at the Taipingkou mouth,which will improve the water depth conditions of the channel during the dry season in the Shashi Reach.With several channel regulation projects,the 3.5-m depth of the Shashi Reach would basically be unobstructed.This promotes utilization of the shipping route from the Taipingkou south branch to the Sanbatan north branch as the main navigation channel during the dry season.Considering the factors of current water depth and the clear width limitation of the navigation hole at the Jingzhou Yangtze River Bridge,this route can still be favored as the main navigation channel with a 4.5-m depth during the dry season. 展开更多
关键词 Low water level Shoal evolution Channel water depth utilization Shashi Reach yangtze river
下载PDF
Estimation of Peak Water Level in Pearl River Estuary under the Background of Sea Level Rise
15
作者 KONG Lan CHEN Xiao-hong +1 位作者 ZHUANG Cheng-bin CHEN Dong-wei 《Meteorological and Environmental Research》 CAS 2012年第11期44-46,共3页
[Objective] The study aimed to predict the peak water level in Pearl River Estuary under the background of sea level rise. [Method] The changing trends of peak water level at Denglongshan station and Hengmen station w... [Objective] The study aimed to predict the peak water level in Pearl River Estuary under the background of sea level rise. [Method] The changing trends of peak water level at Denglongshan station and Hengmen station were analyzed firstly on the basis of regression models, and then sea level rise in Pearl River Estuary in 2050 was predicted to estimate the 1-in-50-year peak water level in the same year. [Result] Regression analyses showed that the increasing rate of peak water level over past years was 6.3 mm/a at Denglongshan station and 5.8 mm/a at Hengmen station. In addition, if sea level will rise by 20, 30 and 60 cm respectively in 2050, it was predicted that the 1-in-50-year peak water level will reach 3.04, 3.14 and 3.44 m at Denglongshan station, and 3.19, 3.29 and 3.59 m at Hengmen station separately. [Conclusion] The estimation of peak water level in Pearl River Estuary could provide theoretical references for water resources planning. 展开更多
关键词 Sea level rise Pearl river Estuary Peak water level China
下载PDF
FORECAST OF IMPACTS OF SEA-LEVEL RISE ON THELOW COLONIZED ISLANDS AND THEIR SURROUNDING WATERS IN THE CHANGJIANG RIVER MOUTH
16
作者 YANG Shi-lun ZHAO Qing-ying +1 位作者 XIE Wen-hui WANG Xing-fang(State Key Laboratory of Estuarine & Coastal Research, East China Normal University, Shanghai 200062, P R. China) 《Chinese Geographical Science》 SCIE CSCD 2000年第2期113-118,共6页
As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth... As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season. 展开更多
关键词 SEA-level rise flood hazard loss of wetland salt water INTRUSION CHANGJIANG river MOUTH
下载PDF
Analysis of the Synoptic Situation Field on the Red Tide Occurred in Yangtze River Estuary Water Area
17
作者 Peng Mo Liu Shoudong +1 位作者 Liu Ming Pan Xishan 《International Journal of Technology Management》 2014年第11期112-114,共3页
关键词 赤潮高发区 长江口水域 形势场 天气 数理统计方法 水文数据 气象
下载PDF
Changjiang River sediment delivering into the sea in response to water storage of Sanxia Reservoir in 2003 被引量:6
18
作者 CHU Zhongxin ZHAI Shikui CHEN Xiufa 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第2期71-79,共9页
The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthl... The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003. 展开更多
关键词 Changjiang yangtze river Sanxia Reservoir water storage SEDIMENT
下载PDF
Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin 被引量:5
19
作者 Ali Haghizadeh Lee Teang Shui +1 位作者 Majid Mirzaei Hadi Memarian 《Journal of Water Resource and Protection》 2012年第1期25-31,共7页
Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Enginee... Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Engineering Center Geospatial River Analysis System (HEC-GEORAS), imitates flow and water profiles in the Neka river basin’s downstream flood plain. Hydrograph phases studied during the flood seasons of 1986-1999 and from 2002-2004 were used to calibrate and verify the hydraulic model respectively. Simulations of peak flood stages and hydrographs’ evaluations are congruent with studies and observations, with the former showing mean square errors between 4.8 - 10 cm. HECRAS calculations and forecast flood water levels. Nash-Sutcliffe effectiveness (CR3) is more than 0.92 along with elevated levels of water which were created with some effectiveness (CR5) of 0.94 for the validation period. The coupled two models show good performance in the water level modeling. 展开更多
关键词 HEC-RAS HEC-GEORAS Nash-Sutcliffe Neka river water level MODELING
下载PDF
Effects of water level fluctuation on sedimentary characteristics and reservoir architecture of a lake, river dominated delta 被引量:2
20
作者 张阳 邱隆伟 +2 位作者 杨保良 李际 王晔磊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2958-2971,共14页
The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dom... The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dominated delta, water level fluctuations and fluviation, are both important controlling factors of the sedimentary characteristics and reservoir architecture. To discuss the effects of water level fluctuation on sediment characteristics and reservoir architecture of this delta, the Fangniugou section in the east of the Songliao Basin was selected for study. Based on an outcrop investigation of the lacustrine basin river-dominated delta, combining with an analysis of the major and trace chemical elements in the sediments to determine the relative water depth, through architecture bounding surfaces and lithofacies division, sedimentary microfacies recognition and architectural element research, this work illustrated the effects of water level fluctuation on the reservoir architecture and established sedimentary models for the lacustrine basin river-dominated delta under various water level conditions. The results show that there are 8 lithofacies in the Fangniugou section. The fan delta front, which is the main object of this study, develops four sedimentary microfacies that include the underwater distributary channel, river mouth bar, sheet sand and interdistributary bay. The effects of water level fluctuation on different orders geographic architecture elements are respectively reflected in the vertical combination of the composite sand bodies, the plane combination of the single sand bodies, the particle size changes in the vertical of hyperplasia in the single sand body, the coset and lamina. In the case of the sand body development of the petroliferous basin, varying water level conditions and research locations resulted in significant variation in the distribution and combination of the sand bodies in the lacustrine basin. 展开更多
关键词 water level fluctuation sedimentary characteristics reservoir architecture river dominated delta lacustrine basin
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部