For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitorin...For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high展开更多
It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically ...It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically sink some tens of meters below the surface, collecting data, characterizing water properties and then coming to the surface again. The life span of the probes may be assured by an on-board power supply or through batteries recharged by solar cells. The basic idea of the WSN is reported together with a detailed analysis of the operational constraints, the energy requirements, and the electronic and mechanical discussion.展开更多
Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel s...Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel soil pore water metal sensor(SPW-Msensor) for in situ and online monitoring of Cd in soil pore water(Cd_(pw)).The SPW-Msensor integrates an automated sampling device,comprising a Rhizon sampler and a reciprocating series pump with an independent dual plunger drive,along with a portable electrochemical sensor consisting of a screen-printed electrode,flow cell,and portable potentiostat.The SPW-Msensor enables the detection of Cd within a linear range of 50 to 300 ppb while exhibiting high anti-interference capability.Moreover,it demonstrates excellent repeatability(relative standard deviation values(RSDs)<3.6%) across 30 measurements conducted within a 2-h period.The method exhibits good agreement with results obtained using the standard ICP-MS method(RSDs<5%).Additionally,this study establishes a positive correlation between Cd_(pw)detected by the SPW-Msensor and total Cd concentration(Cd_(total)) in the soil with an R^(2) value equal to 0.89.Data acquired from the SPW-Msensor can be utilized for predicting Cd_(total)through partial least squares regression modeling,achieving model quality score(Q^(2)) of 0.69,adjusted R^(2) of 0.9345,and root mean square error(RMSE) of 0.1912.The SPW-Msensor demonstrates real-time monitoring capabilities for assessing Cd levels in acidified soils.This SPW-Msensor offers an efficient approach for in-situ and continuous monitoring of Cd_(pw)that provides valuable insights applicable to environmental and agricultural domains.展开更多
Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field....Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.展开更多
Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires th...Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires the development of online and automated technologies for monitoring microbial activities in the system. A previous system review and technology screening has identified five single-analyte strategies [1], which were evaluated in this study with a laboratory-scale setup to determine their applicability for automated determination of microbial activity in the injection water system. Four of the five single-analyte measuring principles tested in the laboratory setup were deemed less suitable for automation and/or reliable for use in the detection of microbial activity in the company injection water system. These four principles were: luminescence assay for adenosine-5’-triphosphate (ATP), detection and electrochemical measurements of H<sub>2</sub>S, determination of pH by electrochemical sensor, and measurement of oxidation-reduction potential (ORP). The strategy of staining cells with fluorescent DNA dyes, followed by quantification of fluorescence signals, was identified to hold, with proper optimization of DNA staining and fluorescence detection, a very promising potential for integration in automated, online sensors for microbial activity in the injection water system.展开更多
Microbial activity in the water injection system in oil and gas industry leads to an array of challenges, including biofouling, injectivity loss, reservoir plugging, and microbiologically influenced corrosion (MIC). A...Microbial activity in the water injection system in oil and gas industry leads to an array of challenges, including biofouling, injectivity loss, reservoir plugging, and microbiologically influenced corrosion (MIC). An effective mitigation strategy requires online and real-time monitoring of microbial activity and growth in the system so that the operators can apply and adjust counter-measures quickly and properly. The previous study [1] identified DNA staining technology-with PicoGreen and SYBR Green dyes—as a very promising method for automated, online determination of microbial cell abundance in the vast Saudi Aramco injection seawater systems. This study evaluated DNA staining technology on detection limit, automation potential, and temperature stability for the construction of automated sensor prototype. DNA staining with SYBR Green dye was determined to be better suited for online and real-time monitoring of microbial activity in the Saudi Aramco seawater systems. SYBR Green staining does not require sample pre-treatment, and the fluorescence signal intensity is more stable at elevated temperatures up to 30℃. The lower detection limit of 2 × 10<sup>3</sup>/ml was achieved under the optimized conditions, which is sufficient to detect microbial numbers in Saudi Aramco injection seawater. Finally, the requirements for design and construction of SYBR-based automated sensor prototype were determined.展开更多
Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate ...Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.展开更多
Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the ...Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51179108and50909066)the Key Research Foundation of Nanjing Hydraulic Research Institute(Grant No.Y711007)
文摘For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high
文摘It will show the feasibility of a Wireless Sensor Network (WSN) devoted to monitoring water basin, river, lake, and sea both on the surface and in depth. The swarm of floating probes can be programmed to periodically sink some tens of meters below the surface, collecting data, characterizing water properties and then coming to the surface again. The life span of the probes may be assured by an on-board power supply or through batteries recharged by solar cells. The basic idea of the WSN is reported together with a detailed analysis of the operational constraints, the energy requirements, and the electronic and mechanical discussion.
基金supported by Guangdong Natural Science Foundation-Outstanding Youth Team Project(Grant No.2023B1515040022)the National Natural Science Foundation of China(Grant No.42177270)。
文摘Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel soil pore water metal sensor(SPW-Msensor) for in situ and online monitoring of Cd in soil pore water(Cd_(pw)).The SPW-Msensor integrates an automated sampling device,comprising a Rhizon sampler and a reciprocating series pump with an independent dual plunger drive,along with a portable electrochemical sensor consisting of a screen-printed electrode,flow cell,and portable potentiostat.The SPW-Msensor enables the detection of Cd within a linear range of 50 to 300 ppb while exhibiting high anti-interference capability.Moreover,it demonstrates excellent repeatability(relative standard deviation values(RSDs)<3.6%) across 30 measurements conducted within a 2-h period.The method exhibits good agreement with results obtained using the standard ICP-MS method(RSDs<5%).Additionally,this study establishes a positive correlation between Cd_(pw)detected by the SPW-Msensor and total Cd concentration(Cd_(total)) in the soil with an R^(2) value equal to 0.89.Data acquired from the SPW-Msensor can be utilized for predicting Cd_(total)through partial least squares regression modeling,achieving model quality score(Q^(2)) of 0.69,adjusted R^(2) of 0.9345,and root mean square error(RMSE) of 0.1912.The SPW-Msensor demonstrates real-time monitoring capabilities for assessing Cd levels in acidified soils.This SPW-Msensor offers an efficient approach for in-situ and continuous monitoring of Cd_(pw)that provides valuable insights applicable to environmental and agricultural domains.
基金supported by the National Natural Science Foundation of China(Grant No.51979002).
文摘Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.
文摘Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires the development of online and automated technologies for monitoring microbial activities in the system. A previous system review and technology screening has identified five single-analyte strategies [1], which were evaluated in this study with a laboratory-scale setup to determine their applicability for automated determination of microbial activity in the injection water system. Four of the five single-analyte measuring principles tested in the laboratory setup were deemed less suitable for automation and/or reliable for use in the detection of microbial activity in the company injection water system. These four principles were: luminescence assay for adenosine-5’-triphosphate (ATP), detection and electrochemical measurements of H<sub>2</sub>S, determination of pH by electrochemical sensor, and measurement of oxidation-reduction potential (ORP). The strategy of staining cells with fluorescent DNA dyes, followed by quantification of fluorescence signals, was identified to hold, with proper optimization of DNA staining and fluorescence detection, a very promising potential for integration in automated, online sensors for microbial activity in the injection water system.
文摘Microbial activity in the water injection system in oil and gas industry leads to an array of challenges, including biofouling, injectivity loss, reservoir plugging, and microbiologically influenced corrosion (MIC). An effective mitigation strategy requires online and real-time monitoring of microbial activity and growth in the system so that the operators can apply and adjust counter-measures quickly and properly. The previous study [1] identified DNA staining technology-with PicoGreen and SYBR Green dyes—as a very promising method for automated, online determination of microbial cell abundance in the vast Saudi Aramco injection seawater systems. This study evaluated DNA staining technology on detection limit, automation potential, and temperature stability for the construction of automated sensor prototype. DNA staining with SYBR Green dye was determined to be better suited for online and real-time monitoring of microbial activity in the Saudi Aramco seawater systems. SYBR Green staining does not require sample pre-treatment, and the fluorescence signal intensity is more stable at elevated temperatures up to 30℃. The lower detection limit of 2 × 10<sup>3</sup>/ml was achieved under the optimized conditions, which is sufficient to detect microbial numbers in Saudi Aramco injection seawater. Finally, the requirements for design and construction of SYBR-based automated sensor prototype were determined.
基金This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation(TSRI).Also,this work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.In addition,support by the Taif University Researchers Supporting Project number(TURSP-2020/77),Taif University,Taif,Saudi Arabia.
文摘Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.
文摘Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.