期刊文献+
共找到573,838篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on the effect of water absorption level on rockburst occurrence of sandstone 被引量:1
1
作者 Dongqiao Liu Jie Sun +3 位作者 Pengfei He Manchao He Binghao Cao Yuanyuan Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期136-152,共17页
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ... To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation. 展开更多
关键词 ROCKBURST water Prevention effect Crack evolution
下载PDF
Water, Sanitation and Hygiene in Lower-Level Health Care Facilities of Dar es Salaam Region in Tanzania: Status towards Achieving the Sustainable Development Goals and Way Forward
2
作者 Mariam Mahamudu Hussein Mohamed +8 位作者 Michael Habtu Dennis Rweyemamu Anyitike Mwakitalima Amour Seleman Erick Mgina Khalid Massa Grace Saguti Andre Arsene Bita Fouda Zabulon Yoti 《Advances in Infectious Diseases》 CAS 2024年第1期279-295,共17页
Background: Improving Water, Sanitation and Hygiene in health care settings is a critical prerequisite for achieving national health goals and Sustainable Development Goals (SDGs). The World Health Organization (WHO) ... Background: Improving Water, Sanitation and Hygiene in health care settings is a critical prerequisite for achieving national health goals and Sustainable Development Goals (SDGs). The World Health Organization (WHO) has set a target for each United Nations member state to reach by 2030. Each member state is required to reach by 2022, 2025 and 2030 at least 60%, 80% and 100%, respectively of basic level of service of the five elements which are water, sanitation, hygiene, waste management and environmental cleaning. Methods: This study aimed to evaluate and document the current state of basic water, sanitation, and hygiene services in all lower-level health care facilities in the Dar es Salaam region of Tanzania as of July 2022. A cross-sectional study was conducted in 99 public dispensaries in the Dar es Salaam region’s five councils: Ubungo, Kigamboni, Kinondoni and Temeke Municipalities, and Ilala City. The interviewee form and observational checklists were both digitalized using the Kobo tool software. The respondents were health care facility in-charges or nurse in-charges. Data were downloaded, validated, and imported to Stata version 15 for analysis. Results: The basic WASH level per JMP is far below the target in 2022. Each member state by 2022 is required to reach at least 60% of the basic level of service of each element. We found a low coverage of basic WASH in the 99 dispensaries included in this study. The basic WASH coverage was met in only 10 (10.1%) of the dispensaries, while the remaining 89 (89.9%) dispensaries fall on limited WASH services. Conclusion: This study revealed lower coverage of basic WASH services in dispensaries. An urgent need is required to improve the status of WASH in all the dispensaries and facilitate the provision of quality health care services, patient safety and reduce health care associated infections. 展开更多
关键词 Dispensaries Low level Health Care Facilities Service levels Basic WASH Dar es Salaam
下载PDF
Increase in Organochlorine Contaminant Levels in Major Water Sources of the United States in Response to the Coronavirus Pandemic
3
作者 Wendy Wilburn Sujata Guha Ryan Beni 《Journal of Biosciences and Medicines》 2024年第5期111-143,共33页
Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer product... Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022. 展开更多
关键词 Organochlorine Contaminants TRICLOSAN TRIHALOMETHANE CHLOROFORM water Quality
下载PDF
Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting
4
作者 Yaobin Wang Qian Lu +7 位作者 Xinlei Ge Feng Li Le Chen Zhihui Zhang Zhengping Fu Yalin Lu Yang Song Yunfei Bu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期344-355,共12页
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy... Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications. 展开更多
关键词 Oxygen evolution reaction NANOFIBER water splitting Proton acceptor PEROVSKITE
下载PDF
Hydrochemical Characterisation and Assessment of the Level of Contamination of Groundwater Collected by Private Waterworks in the Town of Moundou in the South of Chad
5
作者 Prosper Doumtoudjinodji Elegbede Manou Bernadin +3 位作者 Jean Claude Doumnang Mbaigane Nguérassem Djoueingue Urbain Agnichola Akilou Socohou Amadou 《Journal of Geoscience and Environment Protection》 2024年第1期13-32,共20页
Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the po... Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the population is building boreholes and wells, most of which tap the surface water table, generally referred to as the “water table”. The aim of this study is to characterize these waters in order to assess their level of contamination and, by extension, the degree of pollution of the water table. Major elements such as: Chloride (Cl<sup>-</sup>), Sulfate (SO<sub>4</sub><sup>2-</sup>), Nitrate (NO<sub>3</sub><sup>-</sup>), Calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) were analysed by Liquid Chromatography and the Bicarbonate ion (HCO<sub>3</sub><sup>-</sup>) was determined by the titrimetric method. The methodology applied is based on a combination of hydrochemical techniques and statistical analysis (PCA and CHA). A sampling campaign was carried out during high-water periods. The results of the physico-chemical analyses show mineralization ranging from 7.29 to 3670 μS/cm, with an average of 487.44 μS/cm. The groundwater studied is generally acidic, with a pH ranging from 3.26 to 6.41. Based on their anions, they are classified into four main hydrochemical facies: chloride and sulphate facies, calcium and magnesium facies, sodium and potassium facies and bicarbonate facies. The various correlations between major ions and statistical analyses have enabled us to identify three hydrogeochemical processes involved in water mineralization. The dominant process is silicate hydrolysis, followed by cation exchange, then anthropogenic input, which influences mineralization by polluting the water. 展开更多
关键词 Drinking water Groundwater Chemical Pollution Moundou Chad
下载PDF
Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India
6
作者 Suchitra PANDEY Geetilaxmi MOHAPATRA Rahul ARORA 《Regional Sustainability》 2024年第2期103-122,共20页
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t... Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions. 展开更多
关键词 Climate change Generalized additive model(GAM) Depth to groundwater level(DGWL) Climatic and anthropogenic variables Arid and semi-arid regions
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:2
7
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area 被引量:1
8
作者 Tian Nan Chen Yue +4 位作者 Wen-geng Cao En-lin Mu Yang Ou Zhen-sheng Lin Wei Kang 《Journal of Groundwater Science and Engineering》 2023年第3期278-293,共16页
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ... The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing. 展开更多
关键词 water level recovery water balance Effective mining reduction Coefficient of recharge variation water level recovery contribution
下载PDF
Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain 被引量:1
9
作者 Parisa Kazerani Ali Naghi Ziaei Kamran Davari 《Journal of Groundwater Science and Engineering》 2023年第1期47-54,共8页
Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ... Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels. 展开更多
关键词 Hill method water level zoning maps Groundwater pumping Safe yield Groundwater crisis
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
10
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise Physical model test Finite-differencemethod Failure mechanism
下载PDF
Evolutive Trend of Water Level in the Ebrie Lagoon by Reconstitution of the Tide Gauge Time Series in Front of the Abidjan Coastline (Côte d’Ivoire)
11
作者 Samassy Rokyatou Yéo Kokoa Chia Marie Reine Allialy +3 位作者 Tano Anoumou Rene Mondé Sylvain Sangaré Seydou Kouadio Affian 《Journal of Water Resource and Protection》 2023年第10期526-538,共13页
The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high popula... The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high population growth. A Global Sea Level Observing System (GLOSS) assessment highlighted the lack of data in Africa, and in Côte d’Ivoire in particular. In order to estimate the evolutionary trend of sea level along the Ivorian coast, and to draw up preventive plans to protect properties and populations, we digitized 65 years of historical tidegrams recorded in the Ebrie Lagoon, using the “Surfer” and “Nunieau” software, then processed them using “T-Tide” and “U-Tide” software. The average levels were calculated using the Demerliac filter from complete daily (day and night) recordings for providing a usable database of 31 years of hourly lagoon data from 1979 to 2015. Our results show that a mean water level in lagoon is 1.04 m. The evolutionary trend in sea level, estimated in the lagoon via the Vridi canal, during the rainy season is the most significant at 2.93 mm/year. This is followed by the dry season, with a trend of 2.89 mm/year. The flood season trend is 2.78 mm/year. This suggests that marine water inflows dominate continental inflows. Our results highlight the vulnerability of Côte d’Ivoire’s coasts to the risk of marine submersion. 展开更多
关键词 TIDE Mean water level Temporal Variability Vridi Channel Marine Submersion
下载PDF
Influence of Seasonal Ground Water Level Fluctuations on the Stability of the Rohingya Refugee Camp Hills of Ukhiya, Teknaf, Cox’s Bazar, Bangladesh—A Threat for Sustainable Development
12
作者 Abu Taher Mohammad Shakhawat Hossain Sheikh Jafia Jafrin +7 位作者 Purba Anindita Khan Mahmuda Khatun Tanmoy Dutta Mohammad Hasan Imam Ruma Bakali Mohammad Hossain Sayem Mohammad Shakil Mahabub Mohammad Emdadul Haque 《Journal of Geoscience and Environment Protection》 2023年第5期384-403,共20页
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ... Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area. 展开更多
关键词 Stability Pore water Pressure Ground water level Rain & Risk Map
下载PDF
A Water Level Forecast of Pattani River in the Southern of Thailand by Deep Learning
13
作者 Prattana Deeprasertkul Kanoksri Sarinnapakorn 《Journal of Computer and Communications》 2023年第8期14-28,共15页
Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource managem... Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well. 展开更多
关键词 Time Series Transformer Linear Regression water level Prediction Data Cleansing
下载PDF
Displaying Water Table Levels, Flow Direction for Predicting Construction Techniques Using Geographic Information: Case Study of Kumba (South West, Cameroon)
14
作者 Benjamin Bahel Blaise Bayiha Ngwem +5 位作者 Cyrille Sigue Bepuaka Ekuka Martin Molua Ndive Alain Christian Bock Hyeng Emmanuel Yamb Sébastien Owona 《Open Journal of Civil Engineering》 2023年第2期388-398,共11页
The rapid economic growth of the town present the matter of water issue as a problem to human life human life, construction life, agriculture, etc. This study is to predict techniques of foundation construction throug... The rapid economic growth of the town present the matter of water issue as a problem to human life human life, construction life, agriculture, etc. This study is to predict techniques of foundation construction through the displaying of the water table at the flow direction in the town of Kumba and GIS. It is characterized by a significant research question which is the level of fall and rise in groundwater levels within the town of Kumba and this influence on choice of types of foundation in construction. This study is directed to decision makers, and technicians of the construction field to develop policies facilitating the supervision when building construction foundation by informing about water level depth and its flow direction in the town. To achieve this, depths of static water levels were measured in over 200 randomly selected hand-dug wells in Kumba, after their geolocation and data were collected during the dry season (November and March 2017) and during the rainy season (between April and October 2017). Data were analyzed and treated using Microsoft Excel and GIS software us as Golden Surfer, Global Mapper, and ArcGIS. The results show variations of water level and those areas that may threaten foundation construction. Quarter as Kumba Station, Mile 1, Bulletin Street (Fongong Quarter), and parts of Fiango show that water table is to deep water and proper for the shallow foundation but very hard for water supply through borehole. Groundwater flow direction was revealed to be towards the south and southeastern parts of Kumba. The significant of the study is to propose to the technician the direct application on the field of chosen types of foundations according to the quarter and proposed groundwater supply possibilities. 展开更多
关键词 GIS Prediction water Table level Kumba FOUNDATION
下载PDF
Shallow sub-lakes are essential for sustaining the successful wintering of waterbirds in Poyang Lake,China
15
作者 Mengjie Lu Zhen Zhang +3 位作者 Peng Chen Changxin Xu Bin Gao Luzhang Ruan 《Avian Research》 SCIE CSCD 2024年第2期219-228,共10页
For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water l... For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water levels.Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years,the wintering waterbird populations have remained relatively stable.Hence,the mechanism of maintaining the stability is worth exploring.This study aimed to compare the distribution of vegetation and herbivorous wa-terbirds in 2015-2016 and 2016-2017,focusing on three shallow sub-lakes and one main lake are.The results showed that the emergence of tubers and the growth of Carex spp.provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level.Shallow sub-lakes supported almost all of the tuber-eating waterbirds(1.42-1.62×10^(5))and most geese(1.34-1.53×10^(6)).However,the main lake area,covered with Persicaria hydropiper,did not provide adequate and accessible food.This resulted in almost no distribution of tuber-eating waterbirds,with only a few geese congregating in early winter.Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake.Therefore,we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake. 展开更多
关键词 Anthropogenic management Carrying capacity Seasonal lake water level Wintering habitat
下载PDF
The Economics of Competing Water Uses under a FERC Licensing Agreement: Estimation of Property Value, Recreation, and Hydroelectric Impacts
16
作者 Matthew Bingham Jason Kinnell 《Journal of Water Resource and Protection》 CAS 2024年第6期414-428,共15页
Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider t... Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use. 展开更多
关键词 Property Value FERC Hydroelectric RECREATION water levels
下载PDF
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
17
作者 Teame G KEBEDE Emiru BIRHANE +1 位作者 Kiros-Meles AYIMUT Yemane G EGZIABHER 《Journal of Arid Land》 SCIE CSCD 2023年第8期975-988,共14页
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ... Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association. 展开更多
关键词 BIOMASS cactus pear cladode growth PHOTOSYNTHESIS water stress water use efficiency
下载PDF
Influencing mechanism and hydrogeological implications of water level fluctuation of lakes in the northern Qaidam Basin,Qinghai-Tibet Plateau
18
作者 Yaping CHENG Qishun FAN +3 位作者 Tianyuan CHEN Haotian YANG Qingkuan LI Chunmei HAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1243-1257,共15页
The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considera... The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area. 展开更多
关键词 lake level fluctuation influencing mechanism hydrogeological implication northern Qaidam Basin in-situ monitoring
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:1
19
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density MAIZE grain yield N uptake compensation effect
下载PDF
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet 被引量:1
20
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 Submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant Breaking characteristics Failure modes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部