Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix...Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.展开更多
The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands ...The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands to agriculturally cultivable land. Yet, underground water resources, the major constraint, hate not been fully integrated in the development process. Therefore, the decline of water resources and deterioration of water quality caused by over-consumption of water resources has begun to hinder further development and has even fed to the abandonment of some oasis. A system dynamics modeling approach is applied to analyze the water use and water management structures in Yaoba Oasis as a case study. The study attempts to identify the characteristics of major feedback loops, which dominate the over-use of underground water resources leading to the deterioration of water resources in quantity and quality.展开更多
The modernization of water conservancy project management is a complicated engineering system involving a management system, a management method, management personnel, the exertion of social, economic, and ecological ...The modernization of water conservancy project management is a complicated engineering system involving a management system, a management method, management personnel, the exertion of social, economic, and ecological effects, and so on. However, indices for evaluating the modernization of water conservancy project management are usually unobtainable in practical applications. Conducting appropriate extension of the classical rough set theory and then applying it to an incomplete information system are the key to the application of the rough set theory Based on analysis of some extended rough set models in incomplete information systems, a rough set model based on the θ-improved limited tolerance relation is put forward. At the same time, upper approximation and lower approximation are defined under this improved relation. According to the evaluation index system and management practices, the threshold for θ is defined. An example study indicates the practicability and maneuverability of the model.展开更多
There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged ...There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged as a new approach that enables joint problem solving among scientists and stakeholders in various fields. In this paper, we aim to introduce transdisciplinary research for supporting the integration of the concept of eco- system services into land and water management in the Tarim River Basin, Xinjiang, Northwest China. While a large number of ecosystem service studies have helped to raise the awareness for the value of nature in China, a number of challenges remain, including an improved understanding of the relationships between ecosystem structure, functions and services, and the interaction of the various ecosystem services. A meaningful valuation of ecosystem services also requires the consideration of their strong spatial heterogeneity. In addition, ways to introduce the con- cept of ecosystem services into decision-making in China need to be explored. Thus, successful integration of the concept of ecosystem services into actual land and water management requires a broad knowledge base that only a number of scientific disciplines and stakeholders can provide jointly, via a transdisciplinary research process. We regard transdisciplinary research as a recursive process to support adaptive management that includes joint knowledge generation and integration among scientists and stakeholders. System, target, and transformation knowledge are generated and integrated during the process of (1) problem (re)definition, (2) problem analysis and strategy development, and (3) evaluation of the impact of the derived strategy. Methods to support transdisciplinary research comprise participatory modelling (actor-based modelling and Bayesian Networks modelling) and partici- patory scenario development. Actor-based modelling is a semi-quantitative method that is based on the analysis of problem perspectives of individual stakeholders as depicted in perception graphs. With Bayesian Networks, com- plex problem fields are modelled probabilistically in a simplified manner, using both quantitative data and qualitative expert judgments. These participatory methods serve to integrate diverse scientific and stakeholder knowledge and to support the generation of actually implementable management strategies for sustainable development. For the purpose of integrating ecosystem services in land and water management in the Tarim River Basin through trans- disciplinary research, collaboration among scientists and institutional stakeholders from different sectors including water, agriculture, forestry, and nature conservation is required. The challenge is to adapt methods of transdisci- plinary research to socio-cultural conditions in China, particularly regarding ways of communication and deci- sion-making.展开更多
Water environment is a part of ecological environment, and conservation of water environment has always been a focus of public attention in China, but water environment management in the vast countryside has been stuc...Water environment is a part of ecological environment, and conservation of water environment has always been a focus of public attention in China, but water environment management in the vast countryside has been stuck in bottleneck. Based on the fi eld investigation in Xianxia Town, Yudu County, Ganzhou City, Jiangxi Province, this paper explored the current situation of local water environment and the management diffi culties, then introduced the holistic view to integrate the linkage of government, market and society, proposed the universality of the individual case, and the new attempt centering on urban-rural integrated water environment management system with public participation mechanism, management subjects' benefit balance and coordination system, marketing operation mechanism and economic incentive mechanism as the extension.展开更多
The authors designed an ecological storm water system in a residential area to replace the conventional underground channels for the collection of storm water so as to reduce the nutrients and sediments discharged. Th...The authors designed an ecological storm water system in a residential area to replace the conventional underground channels for the collection of storm water so as to reduce the nutrients and sediments discharged. This system contains natural sub-creeks as drainage channels discharging overflow to nearby creeks, an open green trench, a storage pond, and natural sub-creeks. The sub -creeks were designed to be integrated into community landscape, which not only increases the efficiency of water usage, but also improves the aesthetic qualities of the community residence area as required by Agenda 21. This research proved the feasibility of an open storm water collection and utilization system for the design of a community water system.展开更多
Aerobic rice (Oryza sativa L.) cultivation is considered an alternative production system to combat increased water scarcity and arsenic (As) contamination in the food chain. Pot experiments were conducted at the ...Aerobic rice (Oryza sativa L.) cultivation is considered an alternative production system to combat increased water scarcity and arsenic (As) contamination in the food chain. Pot experiments were conducted at the Wheat Research Centre, Dinajpur, Bangladesh to examine the role of water management (WM), As and phosphorus (P) on yield and yield attributes of boro (variety BRRI dhan 29) and aman (variety BRRI dhan 32) rice. A total of 18 treatment combinations of the three levels of As (0, 20 and 40 mg/kg) and P (0, 12.5 and 25.0 mg/kg) and two WM strategies (aerobic and anaerobic) were investigated. Yield attributes were significantly affected by increasing As levels. Grain yields of BRRI dhan 29 and BRRI dhan 32 were reduced from 63.0 to 7.7 and 35.0 to 16.5 g/pot with increasing As application, respectively, indicating a greater sensitivity of BRRI dhan 29 than BRRI dhan 32. Moreover, As toxicity was reduced with aerobic compared to anaerobic WM for all P levels. During early growth stages, phytotoxic symptoms appeared on BRRI dhan 29 and BRRI dhan 32 rice stems with increasing As levels without applying P under anaerobic WM. Under anaerobic and As-contaminated conditions, BRRI dhan 29 was highly susceptible to straighthead, which dramatically reduced grain yields. There were significant relationships between the number of effective tillers per pot and root dry weight, grain yield, and number of fertile and unfertile grains per pot for both BRRI dhan 29 and BRRI dhan 32 (P<0.001). Our findings indicate that rice could be grown aerobically in As-contaminated areas with a reduced risk of As toxicity and yield loss.展开更多
The study addressed the question about modernization of Aflaj's administration, and pointed out the pros and cons of both traditional and modern methods. The traditional management seems powerless and is not eligible...The study addressed the question about modernization of Aflaj's administration, and pointed out the pros and cons of both traditional and modern methods. The traditional management seems powerless and is not eligible to follow the social and economic development, however this development even begins to reflect negatively on the administration of Aflaj. The traditional management system of Falaj by rural communities is still an independent management of the state. However, regardless the efficiency of the traditional management system in the past, this traditional management can not take in consideration waters development projects in their region, considering that the concept of local administration is differing with the concept of integrated water management. Therefore, the questions revolve around the future of traditional administration and the role of modern administration of the Aflaj water system to maximize the use of water. Hence, the need for the use of modern methods of the management of Falaj has become a leading supplier key demand to keep up with challenges. This method begins in the basic data onto the role and importance of water in the area of Falaj and pass through the definition of the region Falaj, wondering about an administrative boundary and the importance of the basin of Falaj and how is developing the database, like data network density of rainwater. The importance here is to choose the appropriate and required methods of the development and optimization of Falaj system management, as well as the scientific levels required by specialists, technicians and observers to Falaj administration. Otherwise, it is difficult, in the 21st century, to defme the priorities of geographical surroundings and study the future of Aflaj.展开更多
Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growt...Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growth both in population and economic development,the water shortage has become one of the most constraints on its ecological restoration and socio-economic development,especially in the arid inland regions of northwest China.At first glance,this water shortage in China appears to be a resource crisis.But second,an in-depth analysis reveals that the water shortage crisis arises mainly resulting from the poor water management system and operating mechanism that cannot facilitate fair allocation and efficient utilization of water resources both regionally and nationally and thus is viewed as a crisis of water manage-ment.The solution of China’s water shortage and low-efficient utilization problem will,in particular,require a fundamen-tal and substantial reform or innovation of the existing water management system and operating mechanism.In this paper,we address explicitly the problems existed in the current water management system,explore the basic theory of water re-sources management and provide some insights into the way how to establish a river basin based integrated water re-sources management system in China.展开更多
Water is one of the basic materials in human existence and the development of society and economy. Its sustainable management has always been an eternal subject for the management of human society and also a complex s...Water is one of the basic materials in human existence and the development of society and economy. Its sustainable management has always been an eternal subject for the management of human society and also a complex systemic problem. How to take advantages of water has been a big event in such an agricultural country like China. As economically developed areas, coastal areas are facing water shortage problems due to the rapid economic and social development and inappropriate and unsustainable water management measures. To fully understand and study such problems faced by the coastal areas needs a systematic and integrated framework to consider the various social-economic, natural and engineering factors that affect the sustainable development of water in those areas. The SD (system dynamics) methodology, which is an approach that has been successfully used in solving complex systematic problems in general, and in solving water management problems in particular for more than 50 years, was applied to a typical coastal area, Longkou City in Shandong Province of China, to study and analyze the future sustainable water management of this city. Then the quantitative modeling and analysis of the water development were carried out through scenario analysis. Four different scenarios (business as usual, economic development, water resources protection, and comprehensive) were designed by changing the values of decision-making variables. The total water demand in 2030 of these four scenarios are 0.455 billion m3, 0.793 billion m3, 0.412 billion m3 and 0.487 billion m3, respectively; the corresponding water deficit of these scenarios are 0.292 billion m3, 0.634 billion m3, 0.254 billion m3 and 0.329 billion m3, respectively. The comparison results indicated that the comprehensive scenario is the optimal one among these designed scenarios. To totally solve the water shortage problem with the economy developed in Longkou City needs to take more effective measures to reduce water consumption and improve water conservation technologies.展开更多
The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment ...The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment in water resources, water rights, water market theory, and the "participation" management of water resources, these experiences has been promoted in more than 40 developing countries. Based on analyzing the theory and experiences of water resources management both at home and abroad, especially the theory and experiences of agricultural water resources management, this paper puts forward the main problems waiting for further investigation in China's water resources management and provides some reference and inspiration for the innovation of the system of water resource management in China.展开更多
This article deals with the issue of water system management and emergency management of water supply systems based on experience with the operation of water systems in EU (European Union) Member States. The options...This article deals with the issue of water system management and emergency management of water supply systems based on experience with the operation of water systems in EU (European Union) Member States. The options available for prevention/elimination of the hazard of limited drinking water supply to the public are described. Current climate and, in some countries, also the existing social conditions pose barriers to a smooth water supply to the public. Various hazards endangering the quality and amounts of water produced emerge. Since the risk of water supply outages due to natural or anthropogenic factors cannot be completely eliminated (for instance, hacker attacks pose a new threat to the water companies' control systems), in other words, emergency situations where smooth water supply is disturbed cannot be ruled out, efforts must be made to at least minimise adverse impacts of such events on the users. Organisational and technical conditions minimising such hazards must be set up. A water production and distribution organization and management system must be introduced, which will be able to prevent and address such hazards and emergency situations. How to tackle this complex task in the real water system management conditions and to assure some minimal amount of water at least for strategic consumers is discussed in this article. The results of a water system operation risk analysis are presented, feasible methods to minimize such risks are described, and options to prevent and address such risks are proposed. A water company organisation and management system taking into account the possibility of development of emergency situations is set forth. Focus is on the use of a telemetric system as a system means that facilitates the prevention and possible addressing of any emergencies occurring during the operation of a water supply system.展开更多
[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental t...[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
Worldwide,several regions suffer from water scarcity and contamination.The infiltration and subsurface storage of rain and river water can reduce water stress.Artificial groundwater recharge,possibly combined with ban...Worldwide,several regions suffer from water scarcity and contamination.The infiltration and subsurface storage of rain and river water can reduce water stress.Artificial groundwater recharge,possibly combined with bank filtration,plant purification and/or the use of subsurface dams and artificial aquifers,is especially advantageous in areas where layers of gravel and sand exist below the earth's surface.Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages.The contamination of infiltrated river water will be reduced by natural attenuation.Clay minerals,iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities.By this,a final water treatment,if necessary,becomes much easier and cheaper.The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes.Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need.This method enables a continuous water supply over the whole year.Generally,artificially recharged groundwater is better protected against pollution than surface water,and the delimitation of water protection zones makes it even more save.展开更多
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw...The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during Nov...The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China.展开更多
As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources ...As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources management between China and the U.S.This study compares water resources policies of China and the U.S.in the areas of national authority,water supply,water quality,and ecosystem use of the water to draw lessons learned and shed light on water resources management in China,the U.S.,and the rest of the world.The lessons learned from the comparison include six aspects.1)New paradigms of people-water harmony and a water-saving society are urgently needed to address the pressing water crisis and achieve the United Nations Sustainable Development Goals(UN SDGs).2)A comprehensive,consistent,forward-looking national policy is necessary to achieve sustainable use of water resources.3)Empowerment of river basin commissions with comprehensive authority over the integrative management of air,land,water,and biological resources in the river basin could significantly enhance the benefits and effectiveness of economic development and environmental protection.4)Expansion of water exchange through market mechanisms among water users promotes efficient and beneficial water uses.5)Use of water for ecosystem services should be an integral part of water resources management.China has set up a national blueprint for achieving ecological civilization;maintaining appropriate amounts of flow in rivers and lakes for maintenance of wildlife and fisheries and ecosystems should be institutionalized as part of this national strategy as well.6)By sharing their rich experiences and lessons in water resources management,economic development,and ecological protection with other countries,China and the U.S.can help the world to achieve global human-water harmony and the UN SDGs.展开更多
文摘Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.
文摘The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands to agriculturally cultivable land. Yet, underground water resources, the major constraint, hate not been fully integrated in the development process. Therefore, the decline of water resources and deterioration of water quality caused by over-consumption of water resources has begun to hinder further development and has even fed to the abandonment of some oasis. A system dynamics modeling approach is applied to analyze the water use and water management structures in Yaoba Oasis as a case study. The study attempts to identify the characteristics of major feedback loops, which dominate the over-use of underground water resources leading to the deterioration of water resources in quantity and quality.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2013B102008)the Open Fund of the Yellow River Committee(Grant No.2011535012)
文摘The modernization of water conservancy project management is a complicated engineering system involving a management system, a management method, management personnel, the exertion of social, economic, and ecological effects, and so on. However, indices for evaluating the modernization of water conservancy project management are usually unobtainable in practical applications. Conducting appropriate extension of the classical rough set theory and then applying it to an incomplete information system are the key to the application of the rough set theory Based on analysis of some extended rough set models in incomplete information systems, a rough set model based on the θ-improved limited tolerance relation is put forward. At the same time, upper approximation and lower approximation are defined under this improved relation. According to the evaluation index system and management practices, the threshold for θ is defined. An example study indicates the practicability and maneuverability of the model.
基金funded by the German Federal Ministry of Education and Research(BMBF)
文摘There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged as a new approach that enables joint problem solving among scientists and stakeholders in various fields. In this paper, we aim to introduce transdisciplinary research for supporting the integration of the concept of eco- system services into land and water management in the Tarim River Basin, Xinjiang, Northwest China. While a large number of ecosystem service studies have helped to raise the awareness for the value of nature in China, a number of challenges remain, including an improved understanding of the relationships between ecosystem structure, functions and services, and the interaction of the various ecosystem services. A meaningful valuation of ecosystem services also requires the consideration of their strong spatial heterogeneity. In addition, ways to introduce the con- cept of ecosystem services into decision-making in China need to be explored. Thus, successful integration of the concept of ecosystem services into actual land and water management requires a broad knowledge base that only a number of scientific disciplines and stakeholders can provide jointly, via a transdisciplinary research process. We regard transdisciplinary research as a recursive process to support adaptive management that includes joint knowledge generation and integration among scientists and stakeholders. System, target, and transformation knowledge are generated and integrated during the process of (1) problem (re)definition, (2) problem analysis and strategy development, and (3) evaluation of the impact of the derived strategy. Methods to support transdisciplinary research comprise participatory modelling (actor-based modelling and Bayesian Networks modelling) and partici- patory scenario development. Actor-based modelling is a semi-quantitative method that is based on the analysis of problem perspectives of individual stakeholders as depicted in perception graphs. With Bayesian Networks, com- plex problem fields are modelled probabilistically in a simplified manner, using both quantitative data and qualitative expert judgments. These participatory methods serve to integrate diverse scientific and stakeholder knowledge and to support the generation of actually implementable management strategies for sustainable development. For the purpose of integrating ecosystem services in land and water management in the Tarim River Basin through trans- disciplinary research, collaboration among scientists and institutional stakeholders from different sectors including water, agriculture, forestry, and nature conservation is required. The challenge is to adapt methods of transdisci- plinary research to socio-cultural conditions in China, particularly regarding ways of communication and deci- sion-making.
文摘Water environment is a part of ecological environment, and conservation of water environment has always been a focus of public attention in China, but water environment management in the vast countryside has been stuck in bottleneck. Based on the fi eld investigation in Xianxia Town, Yudu County, Ganzhou City, Jiangxi Province, this paper explored the current situation of local water environment and the management diffi culties, then introduced the holistic view to integrate the linkage of government, market and society, proposed the universality of the individual case, and the new attempt centering on urban-rural integrated water environment management system with public participation mechanism, management subjects' benefit balance and coordination system, marketing operation mechanism and economic incentive mechanism as the extension.
文摘The authors designed an ecological storm water system in a residential area to replace the conventional underground channels for the collection of storm water so as to reduce the nutrients and sediments discharged. This system contains natural sub-creeks as drainage channels discharging overflow to nearby creeks, an open green trench, a storage pond, and natural sub-creeks. The sub -creeks were designed to be integrated into community landscape, which not only increases the efficiency of water usage, but also improves the aesthetic qualities of the community residence area as required by Agenda 21. This research proved the feasibility of an open storm water collection and utilization system for the design of a community water system.
基金USAID funded subproject on Impact of Arsenic Contamination on Agricultural Sustainability and Food Quality(Main USAID Grant No.388-G-00-02-00070-00)
文摘Aerobic rice (Oryza sativa L.) cultivation is considered an alternative production system to combat increased water scarcity and arsenic (As) contamination in the food chain. Pot experiments were conducted at the Wheat Research Centre, Dinajpur, Bangladesh to examine the role of water management (WM), As and phosphorus (P) on yield and yield attributes of boro (variety BRRI dhan 29) and aman (variety BRRI dhan 32) rice. A total of 18 treatment combinations of the three levels of As (0, 20 and 40 mg/kg) and P (0, 12.5 and 25.0 mg/kg) and two WM strategies (aerobic and anaerobic) were investigated. Yield attributes were significantly affected by increasing As levels. Grain yields of BRRI dhan 29 and BRRI dhan 32 were reduced from 63.0 to 7.7 and 35.0 to 16.5 g/pot with increasing As application, respectively, indicating a greater sensitivity of BRRI dhan 29 than BRRI dhan 32. Moreover, As toxicity was reduced with aerobic compared to anaerobic WM for all P levels. During early growth stages, phytotoxic symptoms appeared on BRRI dhan 29 and BRRI dhan 32 rice stems with increasing As levels without applying P under anaerobic WM. Under anaerobic and As-contaminated conditions, BRRI dhan 29 was highly susceptible to straighthead, which dramatically reduced grain yields. There were significant relationships between the number of effective tillers per pot and root dry weight, grain yield, and number of fertile and unfertile grains per pot for both BRRI dhan 29 and BRRI dhan 32 (P<0.001). Our findings indicate that rice could be grown aerobically in As-contaminated areas with a reduced risk of As toxicity and yield loss.
文摘The study addressed the question about modernization of Aflaj's administration, and pointed out the pros and cons of both traditional and modern methods. The traditional management seems powerless and is not eligible to follow the social and economic development, however this development even begins to reflect negatively on the administration of Aflaj. The traditional management system of Falaj by rural communities is still an independent management of the state. However, regardless the efficiency of the traditional management system in the past, this traditional management can not take in consideration waters development projects in their region, considering that the concept of local administration is differing with the concept of integrated water management. Therefore, the questions revolve around the future of traditional administration and the role of modern administration of the Aflaj water system to maximize the use of water. Hence, the need for the use of modern methods of the management of Falaj has become a leading supplier key demand to keep up with challenges. This method begins in the basic data onto the role and importance of water in the area of Falaj and pass through the definition of the region Falaj, wondering about an administrative boundary and the importance of the basin of Falaj and how is developing the database, like data network density of rainwater. The importance here is to choose the appropriate and required methods of the development and optimization of Falaj system management, as well as the scientific levels required by specialists, technicians and observers to Falaj administration. Otherwise, it is difficult, in the 21st century, to defme the priorities of geographical surroundings and study the future of Aflaj.
基金supported by the National Basic Research Program (973) of China (2009CB421302)the CAS/SAFEA International Partnership Program for Creative Research Teams "The Basic Research on Water Issues of the Arid Inland Basin Regions in China" (CXTD-Z2005-2-4)
文摘Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growth both in population and economic development,the water shortage has become one of the most constraints on its ecological restoration and socio-economic development,especially in the arid inland regions of northwest China.At first glance,this water shortage in China appears to be a resource crisis.But second,an in-depth analysis reveals that the water shortage crisis arises mainly resulting from the poor water management system and operating mechanism that cannot facilitate fair allocation and efficient utilization of water resources both regionally and nationally and thus is viewed as a crisis of water manage-ment.The solution of China’s water shortage and low-efficient utilization problem will,in particular,require a fundamen-tal and substantial reform or innovation of the existing water management system and operating mechanism.In this paper,we address explicitly the problems existed in the current water management system,explore the basic theory of water re-sources management and provide some insights into the way how to establish a river basin based integrated water re-sources management system in China.
文摘Water is one of the basic materials in human existence and the development of society and economy. Its sustainable management has always been an eternal subject for the management of human society and also a complex systemic problem. How to take advantages of water has been a big event in such an agricultural country like China. As economically developed areas, coastal areas are facing water shortage problems due to the rapid economic and social development and inappropriate and unsustainable water management measures. To fully understand and study such problems faced by the coastal areas needs a systematic and integrated framework to consider the various social-economic, natural and engineering factors that affect the sustainable development of water in those areas. The SD (system dynamics) methodology, which is an approach that has been successfully used in solving complex systematic problems in general, and in solving water management problems in particular for more than 50 years, was applied to a typical coastal area, Longkou City in Shandong Province of China, to study and analyze the future sustainable water management of this city. Then the quantitative modeling and analysis of the water development were carried out through scenario analysis. Four different scenarios (business as usual, economic development, water resources protection, and comprehensive) were designed by changing the values of decision-making variables. The total water demand in 2030 of these four scenarios are 0.455 billion m3, 0.793 billion m3, 0.412 billion m3 and 0.487 billion m3, respectively; the corresponding water deficit of these scenarios are 0.292 billion m3, 0.634 billion m3, 0.254 billion m3 and 0.329 billion m3, respectively. The comparison results indicated that the comprehensive scenario is the optimal one among these designed scenarios. To totally solve the water shortage problem with the economy developed in Longkou City needs to take more effective measures to reduce water consumption and improve water conservation technologies.
文摘The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment in water resources, water rights, water market theory, and the "participation" management of water resources, these experiences has been promoted in more than 40 developing countries. Based on analyzing the theory and experiences of water resources management both at home and abroad, especially the theory and experiences of agricultural water resources management, this paper puts forward the main problems waiting for further investigation in China's water resources management and provides some reference and inspiration for the innovation of the system of water resource management in China.
文摘This article deals with the issue of water system management and emergency management of water supply systems based on experience with the operation of water systems in EU (European Union) Member States. The options available for prevention/elimination of the hazard of limited drinking water supply to the public are described. Current climate and, in some countries, also the existing social conditions pose barriers to a smooth water supply to the public. Various hazards endangering the quality and amounts of water produced emerge. Since the risk of water supply outages due to natural or anthropogenic factors cannot be completely eliminated (for instance, hacker attacks pose a new threat to the water companies' control systems), in other words, emergency situations where smooth water supply is disturbed cannot be ruled out, efforts must be made to at least minimise adverse impacts of such events on the users. Organisational and technical conditions minimising such hazards must be set up. A water production and distribution organization and management system must be introduced, which will be able to prevent and address such hazards and emergency situations. How to tackle this complex task in the real water system management conditions and to assure some minimal amount of water at least for strategic consumers is discussed in this article. The results of a water system operation risk analysis are presented, feasible methods to minimize such risks are described, and options to prevent and address such risks are proposed. A water company organisation and management system taking into account the possibility of development of emergency situations is set forth. Focus is on the use of a telemetric system as a system means that facilitates the prevention and possible addressing of any emergencies occurring during the operation of a water supply system.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3073)Jiangsu Science and Technology Support Program(BE2014-342-1)~~
文摘[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
文摘Worldwide,several regions suffer from water scarcity and contamination.The infiltration and subsurface storage of rain and river water can reduce water stress.Artificial groundwater recharge,possibly combined with bank filtration,plant purification and/or the use of subsurface dams and artificial aquifers,is especially advantageous in areas where layers of gravel and sand exist below the earth's surface.Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages.The contamination of infiltrated river water will be reduced by natural attenuation.Clay minerals,iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities.By this,a final water treatment,if necessary,becomes much easier and cheaper.The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes.Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need.This method enables a continuous water supply over the whole year.Generally,artificially recharged groundwater is better protected against pollution than surface water,and the delimitation of water protection zones makes it even more save.
基金supported by the National Natural Science Foundation of China(30030090) Jiangsu Key Project of Science and Technology(BE2001331).
文摘The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
文摘The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China.
文摘As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources management between China and the U.S.This study compares water resources policies of China and the U.S.in the areas of national authority,water supply,water quality,and ecosystem use of the water to draw lessons learned and shed light on water resources management in China,the U.S.,and the rest of the world.The lessons learned from the comparison include six aspects.1)New paradigms of people-water harmony and a water-saving society are urgently needed to address the pressing water crisis and achieve the United Nations Sustainable Development Goals(UN SDGs).2)A comprehensive,consistent,forward-looking national policy is necessary to achieve sustainable use of water resources.3)Empowerment of river basin commissions with comprehensive authority over the integrative management of air,land,water,and biological resources in the river basin could significantly enhance the benefits and effectiveness of economic development and environmental protection.4)Expansion of water exchange through market mechanisms among water users promotes efficient and beneficial water uses.5)Use of water for ecosystem services should be an integral part of water resources management.China has set up a national blueprint for achieving ecological civilization;maintaining appropriate amounts of flow in rivers and lakes for maintenance of wildlife and fisheries and ecosystems should be institutionalized as part of this national strategy as well.6)By sharing their rich experiences and lessons in water resources management,economic development,and ecological protection with other countries,China and the U.S.can help the world to achieve global human-water harmony and the UN SDGs.