期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Evolutive Trend of Water Level in the Ebrie Lagoon by Reconstitution of the Tide Gauge Time Series in Front of the Abidjan Coastline (Côte d’Ivoire)
1
作者 Samassy Rokyatou Yéo Kokoa Chia Marie Reine Allialy +3 位作者 Tano Anoumou Rene Mondé Sylvain Sangaré Seydou Kouadio Affian 《Journal of Water Resource and Protection》 2023年第10期526-538,共13页
The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high popula... The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high population growth. A Global Sea Level Observing System (GLOSS) assessment highlighted the lack of data in Africa, and in Côte d’Ivoire in particular. In order to estimate the evolutionary trend of sea level along the Ivorian coast, and to draw up preventive plans to protect properties and populations, we digitized 65 years of historical tidegrams recorded in the Ebrie Lagoon, using the “Surfer” and “Nunieau” software, then processed them using “T-Tide” and “U-Tide” software. The average levels were calculated using the Demerliac filter from complete daily (day and night) recordings for providing a usable database of 31 years of hourly lagoon data from 1979 to 2015. Our results show that a mean water level in lagoon is 1.04 m. The evolutionary trend in sea level, estimated in the lagoon via the Vridi canal, during the rainy season is the most significant at 2.93 mm/year. This is followed by the dry season, with a trend of 2.89 mm/year. The flood season trend is 2.78 mm/year. This suggests that marine water inflows dominate continental inflows. Our results highlight the vulnerability of Côte d’Ivoire’s coasts to the risk of marine submersion. 展开更多
关键词 TIDE Mean water Level Temporal Variability Vridi Channel Marine Submersion
下载PDF
Preliminary analysis of distribution and variation of perennialmonthly mean water masses in the Bohai Sea,the Huanghai Sea and the East China Sea 被引量:6
2
作者 Liu Shuxun, Shen Xinqiang, Wang Youqin and Han Shixin 1. East China Sea Fisheries Research Institute, No. 300, Jungong Road, Shanghai 200090, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第4期483-498,共16页
On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made b... On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made by using the method of fuzzy cluster from the modified characteristic of water masses in the shallow water area. In this paper, the basic features, growth and decline patterns of water masses in relation to fishing grounds in the whole shelves of the Bohai Sea, the Huanghai Sea and the East China Sea are discussed with emphasis. 展开更多
关键词 Preliminary analysis of distribution and variation of perennialmonthly mean water masses in the Bohai Sea the Huanghai Sea and the East China Sea
下载PDF
The Influence of Weather and Climate Variability on Groundwater Quality in Zanzibar
3
作者 Leluu Ramadhan Mohammed Kombo Hamad Kai +2 位作者 Agnes Laurence Kijazi Said Suleiman Bakar Sara Abdalla Khamis 《Atmospheric and Climate Sciences》 CAS 2022年第4期613-634,共22页
Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate va... Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate variability, and changes on the quality of groundwater resources in Zanzibar. The study used the climate datasets including rainfall (RF), Maximum and Minimum Temperature (T<sub>max</sub> and T<sub>min</sub>), the records acquired from Tanzania Meteorological Authority (TMA) Zanzibar office for 30 (1989-2019) and 10 (2010-2019) years periods. Also, the Zanzibar Water Authority (ZAWA) monthly records of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Ground Water Temperature (GWT) were used. Interpolation techniques were used for controlling outliers and missing datasets. Indeed, correlation, trend, and time series analyses were used to show the relationship between climate and water quality parameters. However, simple statistical analyses including mean, percentage changes, and contributions to the annual and seasonal mean were calculated. Moreover, t and paired t-tests were used to show the significant changes in the mean of the variables for two defined periods of 2011-2015 and 2016-2020 at p ≤ 0.05. Results revealed that seasonal variability of groundwater quality from March to May (MAM) has shown a significant change in trends ranging from 0.1 to 2.8 mm/L/yr, 0.1 to 2.8 μS/cm/yr, and 0.1 to 2.0&#8451;/yr for TDS, EC, and GWT, respectively. The changes in climate parameters were 0.1 to 2.4 mm/yr, 0.2 to 1.3&#8451;/yr and 0.1 to 2.5&#8451;/yr in RF, T<sub>max</sub>, and T<sub>min</sub>, respectively. From October to December (OND) changes in groundwater parameters ranged from 0.2 to 2.5 mm/L/yr 0.1 to 2.9 μS/cm/yr, and 0.1 to 2.1&#8451;/yr for TDS, EC, and GWT, whereas RF, T<sub>max</sub>, and T<sub>min</sub> changed from 0.3 to 1.8 mm/yr, 0.2 to 1.9&#8451;/yr and 0.2 to 2.0&#8451;/yr, respectively. Moreover, the study has shown strong correlations between climate and water quality parameters in MAM and OND. Besides, the paired correlation has shown significant changes in all parameters except the rainfall. Conclusively, the study has shown a strong influence of climate variability on the quality of groundwater in Zanzibar, and calls for more studies to extrapolate these results throughout Tanzania. 展开更多
关键词 Quality of Groundwater Parameters Climate Variability Mean Changes of Climate and water Quality Parameters
下载PDF
Epipelagic mesozooplankton communities in the northeastern Indian Ocean off Myanmar during the winter monsoon
4
作者 Ping Du Dingyong Zeng +11 位作者 Feilong Lin Sanda Naing Zhibing Jiang Jingjing Zhang Di Tian Qinghe Liu Yuanli Zhu Soe Moe Lwin Wenqi Ye Chenggang Liu Lu Shou Feng Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期57-69,共13页
The northern Andaman Sea off Myanmar is one of the relatively high productive regions in the Indian Ocean.The abundance,biomass and species composition of mesozooplankton and their relationships with environmental var... The northern Andaman Sea off Myanmar is one of the relatively high productive regions in the Indian Ocean.The abundance,biomass and species composition of mesozooplankton and their relationships with environmental variables in the epipelagic zone(~200 m)were studied for the first time during the Sino-Myanmar joint cruise(February 2020).The mean abundance and biomass of mesozooplankton were(1916.7±1192.9)ind./m3and(17.8±7.9)mg/m3,respectively.A total of 213 species(taxa)were identified from all samples.The omnivorous Cyclopoida Oncaea venusta and Oithona spp.were the top two dominant taxa.Three mesozooplankton communities were determined via cluster analysis:the open ocean in the Andaman Sea and the Bay of Bengal(Group A),the transition zone across the Preparis Channel(Group B),and nearshore water off the Ayeyarwady Delta and along the Tanintharyi Coast(Group C).Variation partitioning analysis revealed that the interaction of physical and biological factors explained 98.8%of mesozooplankton community spatial variation,and redundancy analysis revealed that column mean chlorophyll a concentration(CMCHLA)was the most important explanatory variable(43.1%).The abundance and biomass were significantly higher in Group C,the same as CMCHLA and column mean temperature(CMT)and in contrast to salinity,and CMT was the dominant factor.Significant taxon spatial variations were controlled by CMCHLA,salinity and temperature.This study suggested that mesozooplankton spatial variation was mainly regulated by physical processes through their effects on CMCHLA.The physical processes were simultaneously affected by heat loss differences,freshwater influx,eddies and depth. 展开更多
关键词 MESOZOOPLANKTON Myanmar epipelagic zone physical processes water column mean chlorophyll a
下载PDF
Establishment and analysis of global gridded Tm-Ts relationship model 被引量:7
5
作者 Zeying Lan Bao Zhang Yichao Geng 《Geodesy and Geodynamics》 2016年第2期101-107,共7页
In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an ... In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression coefficients between Tm and Ts at every 2°× 2.5° grid point using Ts data from European Centre for Medium-Range Weather Forecasts(ECMWF) and Tm data from "GGOS Atmosphere", yielding the grid and bilinear interpolation-based Tm Grid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate(COSMIC) data and radiosonde data, the Tm Grid model shows a higher accuracy relative to the Bevis Tm-Ts relationship which is widely used nowadays. The Tm Grid model will be of certain practical value in high-precision PWV calculation. 展开更多
关键词 Zenith wet delay Precipitable water vapor Ground-based GPS meteorology Weighted mean temperature Gridded Tm-Ts model
下载PDF
WATER VAPOR CONTENT AND MEAN TRANSFER IN THE ATMOSPHERE OVER NORTHWEST CHINA 被引量:13
6
作者 俞亚勋 吴国雄 +2 位作者 王宝灵 董安祥 白虎志 《Acta meteorologica Sinica》 SCIE 2001年第2期191-204,共14页
The interannual and intermonthly climatic features of the water vapor content(hereafter WVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)are calculated and analyzed by using the NCEP/NCAR... The interannual and intermonthly climatic features of the water vapor content(hereafter WVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)are calculated and analyzed by using the NCEP/NCAR global reanalysis grid data(2.5°×2.5°Lat/Lon) for 40 years(1958—1997).The results show that the WVC in the total air column over NWC in four seasons of the year is mainly concentrated on eastern and western NWC respectively.On the average,the WVC over eastern NWC decreases obviously during recent forty years except for winter.while it decreases over western NWC in the whole year.But the WVC over NWC has been increasing since late 1980s in summer.The water vapor comes from the southwestern warm and wet air current along the Yarlung Zangbo River Valley and the Bay of Bengal.and from mid- western Tibetan Plateau and also from the Qinling Mountains at southern Shaanxi Province.The yearly water vapor divergence appears over the middle of NWC to northern Xinjiang and southeastern Shaanxi Province.The yearly water vapor convergence appears over the Tarim Basin and the Tibetan Plateau as well as western Sichuan and southern Gansu. 展开更多
关键词 Northwest China(NWC) water vapor content(WVC) mean water vapor transfer climatic variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部