The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems...The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.展开更多
The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of...The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.展开更多
Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green ...Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.展开更多
In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis si...In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.展开更多
Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of...Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of root biomass changes according to the theory of soil water dynamics. The established models were verified and evaluated using two indicators: root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The results indicated that the annual variation range of root-mean-square error (RMSE) was 0.477-1.231, with an aver- age of 0.810; the annual variation range of mean absolute percentage error (MAPE) was 1.082%-4.052%, with an average of 2.520%, suggesting that the simulation accuracy basically met the requirements. The established numerical models of root water uptake and the compiled program exhibit high simulation accuracy, which can perfectly simulate soil water dynamics during the growth period of crops under nat- ural conditions.展开更多
In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor...In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.展开更多
The optimization of flow control devices(FCDs) for a T-type five-strand billet caster tundish was carried out by water modeling and numerical simulation. In water modeling experiments, flow characteristics of the bare...The optimization of flow control devices(FCDs) for a T-type five-strand billet caster tundish was carried out by water modeling and numerical simulation. In water modeling experiments, flow characteristics of the bare tundish and tundish conf igurations with designed U-type baff les and a round turbulence inhibitor were analyzed using residence time distribution(RTD) curves. Mathematical models for liquid steel in the real plant tundish were established using the fluid dynamics software package Fluent. The flow field, the temperature field, and the RTD curves of liquid steel in the proposed tundish conf igurations were obtained. The results of numerical simulation and water modeling were validated with each other by the predicted and experimental RTD curves. The results of flow field and temperature field were used to ref lect the actual state of a real plant tundish and to choose the optimal FCD. Finaly, from the whole performance of the multi-strand tundish, the optimal scheme was determined by combining the results of water modeling and numerical simulation. With the optimal tundish equipped with U-type baffle with def lector holes and round turbulence inhibitor, not only was the flow characteristic of each strand improved, but also the difference of flow characteristics between multiple strands was smaller.展开更多
Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction am...Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction among different areas of a sea bay, and to predict the water quality of those areas. The relation matrix is calculated based on the numerical results from a water quality model. This method is applied to the study of water exchange and the prediction of water quality of the Bohai Sea. The Bohai Sea is divided into five areas, and the effect of seasonal wind is taken into consideration. The results show a) the relation matrix can be used to study the water exchange among different areas and predict water quality of different areas at the respective characteristic time, b) the reduction of pollutant is dependent on both water exchange and initial distribution of the pollutant, and c) the half-life time of the pollutant is longer than the half-exchange time of the sea water.展开更多
Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a ...Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.展开更多
Fluid flow characteristics in a four-strand tundish with gas blowing were studied by water modeling experiments.It is found that gas blowing can greatly improve the flow characteristics in the tundish with a turbulenc...Fluid flow characteristics in a four-strand tundish with gas blowing were studied by water modeling experiments.It is found that gas blowing can greatly improve the flow characteristics in the tundish with a turbulence inhibitor.It dramatically increases the peak concentration time,and greatly decreases the dead volume,and reduces the minimum residence time.The gas blowing location,gas flow rate,and porous plug area greatly influence the flow characteristics in the tundish; the gas blowing location near the baffle,smaller gas flow rate,and smaller porous plug area are better for improving the fluid flow characteristics.Using gas blowing can reduce the difference of flows at the middle outlets and side outlets for the multi-strand tundish.Bubbles produced by gas blowing can absorb small inclusions and provide the condition for inclusion collision and aggregation.Therefore,introducing gas blowing into a tundish and combining the turbulence inhibitor can improve inclusion floating and removal,and the cleanness of molten steel can be advanced.展开更多
In order to study the mechanism of confined water inrush from coal seam floor,the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiment...In order to study the mechanism of confined water inrush from coal seam floor,the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments,theoretical analysis and mechanical model calculation.The crack extension rule and the ultimate destruction form of the rock specimens were obtained.The mechanism of water inrush was explained reasonably from mechanical point of view.The practical criterion of water inrush was put forward.The results show that the rock permeability "mutation" phenomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale.The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress.The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack.The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack.With the two conditions satisfied at the same time,the floor water inrush accident will occur.展开更多
Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi L...Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.展开更多
Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify th...Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.展开更多
Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperat...Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.展开更多
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a...A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.展开更多
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing tr...The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod...An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the she...The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.展开更多
We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rate...We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rates were subsequently measured using the conductivity method. A new criterion was proposed to determine the mixing time. On this basis, the quasi-equations of the mixing time as a function of different parameters were established. The parameters of the top-blown smelting process were optimized using high-speed photography. An excessively high gas flow rate or excessively low liquid height would enhance the fluctuation and splashing of liquid in the bath, which is unfavorable for material mixing. Simultaneously increasing the lance diameter and the lance submersion depth would promote the mixing in the bath, thereby improving the smelting efficiency.展开更多
With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui Rive...With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui River,especially in the middle and lower reaches.The primary objective of this study was to establish the water quality model for the middle and lower reaches of the Hanshui River based on the model of MIKE 11.The main pollutants migration and transformation process could be simulated using the water quality model.The rainfall-runoff model,hy-drodynamic model and water quality model were established using MIKE 11.The pollutants,such as chemical oxygen demand(COD),biochemical oxygen demand(BOD),ammonia nitrogen,nitrate nitrogen,phosphorus,dissolved oxy-gen(DO),were simulated and predicted using the above three models.A set of methods computing non-point source pollution load of the Hanshui River Basin was proposed in this study.The simulated and observed values of COD,BOD5,ammonia,nitrate,DO,and total phosphorus were compared after the parameter calibration of the water quality model.The simulated and observed results match better,thus the model can be used to predict water quality in the fu-ture for the Hanshui River.The pollution trend could be predicted using the water quality model according pollution load generation.It is helpful for government to take effective measures to prevent the water bloom and protect water quality in the river.展开更多
基金This study was supported by the National Nature Science Foundation of China(No.41671015,No.42071027,No.41890821)。
文摘The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.
基金supported by the Metropolitan Water Reclamation District of Greater Chicago(Requisition No.1449764).
文摘The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.
文摘Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.
文摘In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.
文摘Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of root biomass changes according to the theory of soil water dynamics. The established models were verified and evaluated using two indicators: root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The results indicated that the annual variation range of root-mean-square error (RMSE) was 0.477-1.231, with an aver- age of 0.810; the annual variation range of mean absolute percentage error (MAPE) was 1.082%-4.052%, with an average of 2.520%, suggesting that the simulation accuracy basically met the requirements. The established numerical models of root water uptake and the compiled program exhibit high simulation accuracy, which can perfectly simulate soil water dynamics during the growth period of crops under nat- ural conditions.
文摘In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.
基金financially supported by the National Natural Science Foundation of China(51504002)
文摘The optimization of flow control devices(FCDs) for a T-type five-strand billet caster tundish was carried out by water modeling and numerical simulation. In water modeling experiments, flow characteristics of the bare tundish and tundish conf igurations with designed U-type baff les and a round turbulence inhibitor were analyzed using residence time distribution(RTD) curves. Mathematical models for liquid steel in the real plant tundish were established using the fluid dynamics software package Fluent. The flow field, the temperature field, and the RTD curves of liquid steel in the proposed tundish conf igurations were obtained. The results of numerical simulation and water modeling were validated with each other by the predicted and experimental RTD curves. The results of flow field and temperature field were used to ref lect the actual state of a real plant tundish and to choose the optimal FCD. Finaly, from the whole performance of the multi-strand tundish, the optimal scheme was determined by combining the results of water modeling and numerical simulation. With the optimal tundish equipped with U-type baffle with def lector holes and round turbulence inhibitor, not only was the flow characteristic of each strand improved, but also the difference of flow characteristics between multiple strands was smaller.
基金This workis financially supported bythe National Natural Science Foundation of China (Grant No.50479049) theNatural Science Foundation of Tianjin (Grant No.033804011)the Hi-tech Development Program(Grant No.2002AA64801006)
文摘Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction among different areas of a sea bay, and to predict the water quality of those areas. The relation matrix is calculated based on the numerical results from a water quality model. This method is applied to the study of water exchange and the prediction of water quality of the Bohai Sea. The Bohai Sea is divided into five areas, and the effect of seasonal wind is taken into consideration. The results show a) the relation matrix can be used to study the water exchange among different areas and predict water quality of different areas at the respective characteristic time, b) the reduction of pollutant is dependent on both water exchange and initial distribution of the pollutant, and c) the half-life time of the pollutant is longer than the half-exchange time of the sea water.
文摘Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.
文摘Fluid flow characteristics in a four-strand tundish with gas blowing were studied by water modeling experiments.It is found that gas blowing can greatly improve the flow characteristics in the tundish with a turbulence inhibitor.It dramatically increases the peak concentration time,and greatly decreases the dead volume,and reduces the minimum residence time.The gas blowing location,gas flow rate,and porous plug area greatly influence the flow characteristics in the tundish; the gas blowing location near the baffle,smaller gas flow rate,and smaller porous plug area are better for improving the fluid flow characteristics.Using gas blowing can reduce the difference of flows at the middle outlets and side outlets for the multi-strand tundish.Bubbles produced by gas blowing can absorb small inclusions and provide the condition for inclusion collision and aggregation.Therefore,introducing gas blowing into a tundish and combining the turbulence inhibitor can improve inclusion floating and removal,and the cleanness of molten steel can be advanced.
基金supported by the Youth Innovation Fund of China(KJ-2013-TDKC-15)the Fostering and Doctor Startup Initial Fund Program of Xi’an University of Science and Technology(201350,2014QDJ033).
文摘In order to study the mechanism of confined water inrush from coal seam floor,the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments,theoretical analysis and mechanical model calculation.The crack extension rule and the ultimate destruction form of the rock specimens were obtained.The mechanism of water inrush was explained reasonably from mechanical point of view.The practical criterion of water inrush was put forward.The results show that the rock permeability "mutation" phenomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale.The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress.The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack.The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack.With the two conditions satisfied at the same time,the floor water inrush accident will occur.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2007AA06A405, 2005AA6010100401)
文摘Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2004CB418502,No. 2007CB407205)the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX1-YW-09-13)
文摘Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.
基金ItemSponsored by Provincial Natural Science Foundation of Inner Mongolia of China (200408020715)
文摘Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.
基金financially supported by the National Natural Science Foundation of China(No.51504018)the China Postdoctoral Science Foundation(2015M580986)the Fundamental Research Funds for the Central Universities(FRF-TP-17-038A2)
文摘A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.
基金supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences (Nos. CX10G-E01-08 andKZCX2-SW-317) and the National Natural Science Foundation of China (No. 50279049)
文摘The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.
基金Funded by the Natural Science Foundation of China (No. 59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
文摘The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.
基金financially supported by the National Natural Science Foundation of China(No.51504018)the China Postdoctoral Science Foundation(No.2015M580986)the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-069A1)
文摘We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rates were subsequently measured using the conductivity method. A new criterion was proposed to determine the mixing time. On this basis, the quasi-equations of the mixing time as a function of different parameters were established. The parameters of the top-blown smelting process were optimized using high-speed photography. An excessively high gas flow rate or excessively low liquid height would enhance the fluctuation and splashing of liquid in the bath, which is unfavorable for material mixing. Simultaneously increasing the lance diameter and the lance submersion depth would promote the mixing in the bath, thereby improving the smelting efficiency.
基金Under the auspices of National Science and Technology Research during the 11th Five-Year Plan Period (No.2008BAI62B05)National Natural Science Foundation of China (No. 50879005,51179006)
文摘With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui River,especially in the middle and lower reaches.The primary objective of this study was to establish the water quality model for the middle and lower reaches of the Hanshui River based on the model of MIKE 11.The main pollutants migration and transformation process could be simulated using the water quality model.The rainfall-runoff model,hy-drodynamic model and water quality model were established using MIKE 11.The pollutants,such as chemical oxygen demand(COD),biochemical oxygen demand(BOD),ammonia nitrogen,nitrate nitrogen,phosphorus,dissolved oxy-gen(DO),were simulated and predicted using the above three models.A set of methods computing non-point source pollution load of the Hanshui River Basin was proposed in this study.The simulated and observed values of COD,BOD5,ammonia,nitrate,DO,and total phosphorus were compared after the parameter calibration of the water quality model.The simulated and observed results match better,thus the model can be used to predict water quality in the fu-ture for the Hanshui River.The pollution trend could be predicted using the water quality model according pollution load generation.It is helpful for government to take effective measures to prevent the water bloom and protect water quality in the river.