The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental significance in a diverse set of technical and scientific contexts,thus have drawn extensive attentions.On cert...The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental significance in a diverse set of technical and scientific contexts,thus have drawn extensive attentions.On certain surfaces,the water monolayer may exhibit an ordered feature,which may result in the novel wetting phenomenon.In this article,based on the molecular dynamics simulations,we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes.We carefully analyze the water density profiles and potential of mean force,which are the origin of the special hexagonal ordered water structures near the solid surface.The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.展开更多
It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we s...It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we show that the water self-diffusion on the top of the first ordered water layer can be enhanced near a super-hydrophilic solid surface. This is attributed to the fewer number of hydrogen bonds between the first ordered water layer and water molecules above this layer, where the ordered water structures induce much slower relaxation behavior of water dipole and longer lifetime of hydrogen bonds formed within the first layer.展开更多
Three-dimensionally ordered macro-porous (3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were prepared with template and impregnation methods, and the resultant samples were characterized by sc...Three-dimensionally ordered macro-porous (3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were prepared with template and impregnation methods, and the resultant samples were characterized by scanning electron microscopy(SEM), X-ray diffractometer(XRD), high-resolution transmission electron microscopy(HRTEM) and temperature programmed reducfion(TPR) techniques. The catalytic performances over the platinum-based catalysts were investigated for water-gas shift (WGS) reaction in a wide temperature range (180-360 ℃). The results showed that 3DOM Pt/TiO2 catalyst exhibited obviously better catalytic performance than the corresponding non macro-porous catalyst, owing to the macro-porous structure favoring mass transfer. Addition of celia into 3DOM Pt/TiO2 led to improvement of catalytic activity. TPR and HRTEM results showed that the interaction existed between ceria and titanium oxide and addition of ceria promoted the reducibility of platinum oxide and TiO2 on the interface of platinum and TiO2 particles, which contributed to high activity of the celia modified catalysts. The results indicated that ceria-modified 3DOM Pt/TiO2 was a promising candidate of fuel cell oriented WGS catalyst.展开更多
This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flex...This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.展开更多
Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. ...Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalytic performance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.展开更多
Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the charact...Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.展开更多
The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and...The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H20 molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.展开更多
So far many investigations have been made on nonlinear wave diffraction problemfor a large-diameter vertical circular cylinder. However,there are still some problemsworthy to be further discussed. It includes that the...So far many investigations have been made on nonlinear wave diffraction problemfor a large-diameter vertical circular cylinder. However,there are still some problemsworthy to be further discussed. It includes that the second order radiation condition isnot very clear and the inhomogeneous term of second order free surface boundarycondition makes the calculation of second order wave force either not easier to beperformed accurately due to its slowly decaying with radial distance or toocomplicated for practical application. In this paper, the second order radiationcondition is posed of the circumferential Fourier components of second orderpotential, instead of the second order potential. It is found that the circumferenatialFourier cormponents of second order potential have to satisfy Sommerfeld radiationcondition. By means of the mathematical formulae derived in this paper, theinhomogeneous term of second order free surface boundary condition were simplifiedand then an exact expression of second order wave force was obtained, which issimpler in form and easier to be used in practical calculation. The calculation resultsagree well with some experimental data.展开更多
In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs...In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs) in Cartesian coordinates to foresee water levels associated with a storm accurately along the coast of Bangladesh. In doing so, the partial derivatives of the SWEs with respect to the space variables were discretized with 5-point central difference, as a test case, to obtain a system of ordinary differential equations with time as an independent variable for every spatial grid point, which with initial conditions were solved by the RK(4,4) method. The complex land-sea interface and bottom topographic details were incorporated closely using nested schemes. The coastal and island boundaries were rectangularized through proper stair step representation, and the storing positions of the scalar and momentum variables were specified according to the rules of structured C-grid. A stable tidal regime was made over the model domain considering the effect of the major tidal constituent, M2 along the southern open boundary of the outermost parent scheme. The Meghna River fresh water discharge was taken into account for the inner most child scheme. To take into account the dynamic interaction of tide and surge, the generated tidal regime was introduced as the initial state of the sea, and the surge was then made to come over it through computer simulation. Numerical experiments were performed with the cyclone April 1991 to simulate water levels due to tide, surge, and their interaction at different stations along the coast of Bangladesh. Our computed results were found to compare reasonable well with the limited observed data obtained from Bangladesh Inland Water Transport Authority (BIWTA) and were found to be better in comparison with the results obtained through the regular finite difference method and the 3-point central difference MOLs coupled with the RK(4,4) method with regard to the root mean square error values.展开更多
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the und...Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.展开更多
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element metho...A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.展开更多
The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit be...The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.展开更多
The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner w...The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner water region combined with the eigenfunction expansions in the outer water region. The numerical method is suitable to the situation of constant depth of outer regions and complicated boundary conditions of inner region, while the oscillating modes, motion amplitudes and phases of the cylinders may be different from one another. The second order potential and hydrodynamic forces acting on each cylinder were evaluated completely by perturbation method. Compared with the case of single oscillating cylinder, hydrodynamic interference phenomena, such as wave resonance and negative added mass, of the radiation problem due to the oscillatory motions of multiple cylinders are identified which is of engineering importance to the design of moorings and other facilities involving multiple structures.展开更多
基金Supported by the National Science Foundation of China(Nos.11290164and 11204341)the Knowledge Innovation Program of SINAP+2 种基金the Knowledge Innovation Program of the Chinese Academy of SciencesShanghai Supercomputer Center of ChinaSupercomputing Center of Chinese Academy of Science
文摘The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental significance in a diverse set of technical and scientific contexts,thus have drawn extensive attentions.On certain surfaces,the water monolayer may exhibit an ordered feature,which may result in the novel wetting phenomenon.In this article,based on the molecular dynamics simulations,we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes.We carefully analyze the water density profiles and potential of mean force,which are the origin of the special hexagonal ordered water structures near the solid surface.The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11290164,11674345,and U1532260)the Key Research Program of Chinese Academy of Sciences(Grant Nos.KJZD-EW-M03 and QYZDJ-SSW-SLH019)+3 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences,the Shanghai Supercomputer Center of Chinathe Computer Network Information Center of Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(the second phase)China
文摘It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we show that the water self-diffusion on the top of the first ordered water layer can be enhanced near a super-hydrophilic solid surface. This is attributed to the fewer number of hydrogen bonds between the first ordered water layer and water molecules above this layer, where the ordered water structures induce much slower relaxation behavior of water dipole and longer lifetime of hydrogen bonds formed within the first layer.
基金supported by the Ministry of Sciences and Technology of China (863 Programs) (2006AA05Z115, 2007AA05Z104)
文摘Three-dimensionally ordered macro-porous (3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were prepared with template and impregnation methods, and the resultant samples were characterized by scanning electron microscopy(SEM), X-ray diffractometer(XRD), high-resolution transmission electron microscopy(HRTEM) and temperature programmed reducfion(TPR) techniques. The catalytic performances over the platinum-based catalysts were investigated for water-gas shift (WGS) reaction in a wide temperature range (180-360 ℃). The results showed that 3DOM Pt/TiO2 catalyst exhibited obviously better catalytic performance than the corresponding non macro-porous catalyst, owing to the macro-porous structure favoring mass transfer. Addition of celia into 3DOM Pt/TiO2 led to improvement of catalytic activity. TPR and HRTEM results showed that the interaction existed between ceria and titanium oxide and addition of ceria promoted the reducibility of platinum oxide and TiO2 on the interface of platinum and TiO2 particles, which contributed to high activity of the celia modified catalysts. The results indicated that ceria-modified 3DOM Pt/TiO2 was a promising candidate of fuel cell oriented WGS catalyst.
基金supported by the Jiangsu Province Natural Science Foundation for the Young Scholars(Grant No.BK20130827)the National Natural Science Foundation of China(Grant Nos.41076008 and 51479055)
文摘This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.
基金supported by the Ministry of Sciences and Technology of China(863 programs,No 2006AA05Z115 and 2007AA05Z104)
文摘Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalytic performance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.
文摘Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10847147)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800270017)the research foundation of NUIST (Grant No. 20080279)
文摘The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H20 molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.
文摘So far many investigations have been made on nonlinear wave diffraction problemfor a large-diameter vertical circular cylinder. However,there are still some problemsworthy to be further discussed. It includes that the second order radiation condition isnot very clear and the inhomogeneous term of second order free surface boundarycondition makes the calculation of second order wave force either not easier to beperformed accurately due to its slowly decaying with radial distance or toocomplicated for practical application. In this paper, the second order radiationcondition is posed of the circumferential Fourier components of second orderpotential, instead of the second order potential. It is found that the circumferenatialFourier cormponents of second order potential have to satisfy Sommerfeld radiationcondition. By means of the mathematical formulae derived in this paper, theinhomogeneous term of second order free surface boundary condition were simplifiedand then an exact expression of second order wave force was obtained, which issimpler in form and easier to be used in practical calculation. The calculation resultsagree well with some experimental data.
文摘In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs) in Cartesian coordinates to foresee water levels associated with a storm accurately along the coast of Bangladesh. In doing so, the partial derivatives of the SWEs with respect to the space variables were discretized with 5-point central difference, as a test case, to obtain a system of ordinary differential equations with time as an independent variable for every spatial grid point, which with initial conditions were solved by the RK(4,4) method. The complex land-sea interface and bottom topographic details were incorporated closely using nested schemes. The coastal and island boundaries were rectangularized through proper stair step representation, and the storing positions of the scalar and momentum variables were specified according to the rules of structured C-grid. A stable tidal regime was made over the model domain considering the effect of the major tidal constituent, M2 along the southern open boundary of the outermost parent scheme. The Meghna River fresh water discharge was taken into account for the inner most child scheme. To take into account the dynamic interaction of tide and surge, the generated tidal regime was introduced as the initial state of the sea, and the surge was then made to come over it through computer simulation. Numerical experiments were performed with the cyclone April 1991 to simulate water levels due to tide, surge, and their interaction at different stations along the coast of Bangladesh. Our computed results were found to compare reasonable well with the limited observed data obtained from Bangladesh Inland Water Transport Authority (BIWTA) and were found to be better in comparison with the results obtained through the regular finite difference method and the 3-point central difference MOLs coupled with the RK(4,4) method with regard to the root mean square error values.
基金This Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20122304120011)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.HEUCFR1119)
文摘Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
基金supported by the National Natural Science Foundation of China (Grant Nos .50709005 ,50639030 and 10772040)the National High Technology Research and Development Program of China (Grant No.2006AA09A109-3) UK EPSRC(Grant Nos . GR/T07220/01 and GR/T07220/02)
文摘A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.
文摘The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.
文摘The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner water region combined with the eigenfunction expansions in the outer water region. The numerical method is suitable to the situation of constant depth of outer regions and complicated boundary conditions of inner region, while the oscillating modes, motion amplitudes and phases of the cylinders may be different from one another. The second order potential and hydrodynamic forces acting on each cylinder were evaluated completely by perturbation method. Compared with the case of single oscillating cylinder, hydrodynamic interference phenomena, such as wave resonance and negative added mass, of the radiation problem due to the oscillatory motions of multiple cylinders are identified which is of engineering importance to the design of moorings and other facilities involving multiple structures.