In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic pri...In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic principles of electrochemical water treatment,the preparation of electrode materials,and the research progress of electrocatalytic technology for degrading organic chemical wastewater.It analyzes the problems faced by electrocatalytic degradation of organic chemical wastewater and looks forward to the development trend of electrocatalytic technology in the field of organic chemical wastewater treatment.展开更多
The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resultin...The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.展开更多
Environmental endocrine disrupting chemicals (EDCs), commonly found in the environment, come from industry and agriculture, including pesticides, fungicides, insecticides, herbicides, and other chemicals. Nowadays, ...Environmental endocrine disrupting chemicals (EDCs), commonly found in the environment, come from industry and agriculture, including pesticides, fungicides, insecticides, herbicides, and other chemicals. Nowadays, more and more EDCs were released into the environment. EDCs go into water body via atmosphere sedi-mentation, surface runoff, soil eluviation, etc., so water body becomes the main place for existing. In order to attract scientific and public attention worldwide and to prevent EDCs pol ution, in this study we reviewed the classification of EDCs and their concentrations in natural water bodies, drinking water sources and water plants, and the reproductive toxicity of EDCs to fish were reviewed. EDCs could disturb the endocrine system and make reproductive organs and reproduction abnor-mal, resulting in fertility descending, reproduction function damage, community quan-tity decrease and even species extinction. In addition, EDCs could disrupt the homeostasis maintained by hormones, which would result in defects of neural de-velopment and abnormalities of the endocrine and reproductive systems. The exact molecular mechanisms have not been completely reported, but researches have suggested that multiple mechanisms were involved in the action of EDCs. Although there have been researches on the biohazard of EDCs, there stil exist problems of weakness in fundamental researches, difficulties in recognizing and identifying EDCs and high cost, which restraint the knowledge on them.展开更多
The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect...The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.展开更多
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi...The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.展开更多
Taking streaming current(SC)as the electrokinetic parameter,this paper demon- strated the electrokinetic chemical characteristics of humic and dannic acids(HA and DA)in sus- pensions including turbid water,coagulated ...Taking streaming current(SC)as the electrokinetic parameter,this paper demon- strated the electrokinetic chemical characteristics of humic and dannic acids(HA and DA)in sus- pensions including turbid water,coagulated water and HA or DA contained water.Accordingly, the studies were carried out for determining the relationship between streaming current and zeta po- tential ζ(expressed by eleetrophoretie mobility EM)in above water conditions.In addition,the mechanisms of HA effecting on streaming current within or after coagulant addition and the elec- trokinetic detection principles for HA or DA were also investigated on experiments and theoretical analysis.The results indicated that the change of SC like ζ presented meaningful information con- cerning the degree for destabilization of a particulate suspension,and HA or DA in water could re- markably decrease the effect of inorganic coagulant upon streaming current,which is in accordance with their influence on coagulation.展开更多
More and more importance has been attached to the problem of endocrine disrupting chemicals (EDCs) since 1960s. This article elaborates the recent research progress of EDCs in water and the trends in the near future i...More and more importance has been attached to the problem of endocrine disrupting chemicals (EDCs) since 1960s. This article elaborates the recent research progress of EDCs in water and the trends in the near future in China.展开更多
During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological condi...During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological conditions, a mercury intrusion method and scanning electron microscope were used in this study. We conclude that the loose, porous and easily collapsible clay particles of the cretaceous aquifer rock mass were the major geological cause for water hazards during the construction of the shaft. We propose an approach of chemical grouting from the working surface and in the end succeeded in blocking the water.展开更多
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati...We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.展开更多
Data obtained from a comprehensive multidisciplinary oceanographic survey in the central and northern parts of the Taiwan Strait, 24°20′-26°00′N, 118°45°-121°00′E by the Fujian Institute of...Data obtained from a comprehensive multidisciplinary oceanographic survey in the central and northern parts of the Taiwan Strait, 24°20′-26°00′N, 118°45°-121°00′E by the Fujian Institute of Oceanology during the period May, 1983 through May, 1984, showed that the distributions of dissolved oxygen (DO), nitrate, dissolved inorganic phosphate and silicate concentrations here had obvious areal and seasonal characteristics that were mainly influenced by the seasonal circulation ofthree major water systems in the Taiwan Strait-- the Taiwan Strait Warm Water (TSWW), theZhejiang-Fujian Coastal Water (ZFCW), and the Northeastern Strait Warm Water (NESWW).展开更多
In the process of using high-pressure flat membranes to treat coal chemical wastewater,the effects of high-pressure flat membranes on the concentration of salt ions and the removal of pollutants were studied under the...In the process of using high-pressure flat membranes to treat coal chemical wastewater,the effects of high-pressure flat membranes on the concentration of salt ions and the removal of pollutants were studied under the conditions of different concentrations of influent TDS,COD and silicon dioxide.The results showed that when the concentration of influent TDS was 35 000-55 000 mg/L,the economic benefit of high-pressure flat membrane operation was the best,and the concentration ratio of high-pressure flat membranes was stable,varying from 3.3 to 3.6.As the concentration of influent organic matter ranged from 100 to 1 800 mg/L,the removal rate of organic matter ranged from 60% to 79%.In addition,the retention rate of high-pressure flat membranes to silicon dioxide was more than 90%.展开更多
This research investigated anthropogenic inputs and chemical weathering in the upper reaches of the Datong River Basin,a tributary of the upper Yellow River,NW China.Multiple approaches were applied to data from 52 wa...This research investigated anthropogenic inputs and chemical weathering in the upper reaches of the Datong River Basin,a tributary of the upper Yellow River,NW China.Multiple approaches were applied to data from 52 water and 12 soil samples from the Muli,Jiangcang,and Mole basins to estimate the chemical component concentrations and to analyze hydrochemical characteristics,distribution patterns,and origins in this coal mining-affected river basin.Coal mining has enhanced the weathering of the lithosphere in the study region.The total dissolved solids in the river range from 145.4 to 701.9 mg/L,which is higher than the global average for rivers.Ion concentration spatial distributions increase around mining areas.River geochemistry is mainly controlled by coal mining activity,carbonate weathering,and silicate weathering,with variances of 33.4%,26.2%,and 21.3%,respectively.Ca^(2+),Mg^(2+),and HCO_(3)^(-)are mainly due to the dissolution of carbonate minerals(calcite>dolomite);Si and K+are mainly from potassium(sodium)feldspar weathering;and Na+and SO_(4)^(2-)mainly from coal mine production.A conceptual model of the river water ion origins from the study area is presented and management implications for improving the adverse effects of coal mining are proposed.These results provide an important standard reference for water resource and environmental management in the study region.展开更多
Ultrafiltration(UF)has been increasingly implemented in drinking water treatment plants;however,algae and their secretions can cause severe membrane fouling and pose great challenges to UF in practice.In this study,a ...Ultrafiltration(UF)has been increasingly implemented in drinking water treatment plants;however,algae and their secretions can cause severe membrane fouling and pose great challenges to UF in practice.In this study,a simple and practical chemically enhanced backwashing(CEB)process was developed to address such issues using various cleaning reagents,including sodium hypochlorite(NaClO),sodium chloride(NaCl),sodium hydroxide(NaOH),sodium citrate,and their combinations.The results indicate that the type of chemical played a fundamental role in alleviating the hydraulically irreversible membrane fouling(HIMF),with NaClO as the best-performing reagent,followed by NaCl.Furthermore,a CEB process using a combination of NaClO with NaCl,NaOH,or sodium citrate delivered little improvement in the alleviation of membrane fouling compared with NaClO alone.The optimized dosage and dosing frequency of NaClO were 10 mg·L^(-1) two times per day.Long-term pilot-scale and full-scale experiments further verified the feasibility of the CEB process in relieving algae-derived membrane fouling.Compared with the conventional hydraulic backwashing without chemical involvement,the CEB process can effectively remove the organic foulants including biopolymers,humic substances,and proteinlike substances by means of oxidization,thereby weakening the cohesive forces between the organic foulants and the membrane surface.Therefore,the CEB process can efficiently alleviate the algae-related membrane fouling with lower chemical consumption,and is proposed as an alternative to control membrane fouling in treating the algae-containing surface water.展开更多
Safe water of adequate quantity, and dignified sanitation, is vital for the sustenance of a healthy and productive human population. In the recognition of this, the United Nations formulated the Sustainable Developmen...Safe water of adequate quantity, and dignified sanitation, is vital for the sustenance of a healthy and productive human population. In the recognition of this, the United Nations formulated the Sustainable Development Goal No. 6 to ensure access to safe water and sanitation by all by 2030. Actualization of this Goal requires information on the existing status of water resources and sanitation levels. Knowledge on contamination of groundwater is essential to prevent risks to human health. The objective of this study was to determine groundwater contamination in Kisumu, Kenya. A total of 275 water samples were collected from 22 sites within the informal settlements between December 2016 and December 2017. The samples were analysed for bacterial contamination and physical chemical quality. Thermal tolerant coliform bacteria enumeration was used as a proxy to bacteria contamination, and the pH, turbidity, dissolved oxygen, conductivity, salinity and temperature were used as physical chemical indicators of contamination. The results indicate that groundwater in Kisumu hosed coliform bacteria and therefore didn’t comply with contamination limits for domestic water proposed by WHO and local KEBS standards. The results further indicated that the levels of bacteriological contamination vary with water type, shallow well having the highest bacterial loads. The study concluded that there were potential risks to human health due to high content of coliform bacteria. The study attributed the contribution to pit latrines that were present in virtually all compounds. The pit latrines are located close to the water points. The study recommended the definition of minimum distance between the pit latrines and shallow wells to minimize contamination. The low income dwellers should be educated on simple ways of treating drinking water contaminated by microbial to minimize enteric infections.展开更多
A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusio...A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.展开更多
A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It ...A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.展开更多
Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (t...Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (temperature, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, electrical conductivity, flow velocity, depth, nitrate, nitrite, phosphate, ammonia, pH, turbidity, total suspended solids, total dissolved solids and colour) were analyzed and results showed that pH (6.8 to 7.26), conductivity (106.0 to 211.7 μS/cm), colour (3.87 ± 0.159 Pt.Co), turbidity (14 - 22.7 NTU), total suspended solids (45 - 54 mg/l), biochemical oxygen demand (2.05 - 2.89 mg/l), chemical oxygen demand (17.19 ± 0.15 mg/l), temperature (24°C to 27°C) and depth (0.23 to 0.35 m) were significantly different across the different stations and between the months. However, total dissolved solids (52.7 to 108.8 mg/l), dissolved oxygen (6.02 to 7.01 mg/l), ammonia (0.00 to 0.02 mg·l-1), nitrite (0.01 - 0.09 mg·l-1), nitrate (0.045 ± 0.006 mg·l-1), phosphate (0.2 to 2.05 mg·l-1) and flow velocity (0.1 to 0.35 m·s-1) showed variations within the sampling stations. Maximum conductivity (211.7 μS/cm), colour (5.83 Pt.Co), turbidity (22.7 NTU), total suspended solids (54 mg/l), total dissolved solids (108.8 mg/l), nitrite (0.09 mg/l) and nitrate (0.006 mg/l) values were recorded at station 2 which is the discharge point of industrial waste. River water did show significant pollutional increase at the effluent impacted site during the present study. Dissolved oxygen showed direct relation with temperature, biochemical oxygen demand and chemical oxygen demand. The non-stop and continuous discharges of cement waste water into the river lessened water quality with significant or corresponding effect on the biota of the studied area, thus paving way for clear assertion that the water quality deterioration was as a result of the impacts of the waste water from cement industry.展开更多
The contamination of drinking water in Pakistan is a serious threat to its citizens. Urbanization leads to an increased demand of drinking water supply that leads to excessive drawdown that further causes lowering of ...The contamination of drinking water in Pakistan is a serious threat to its citizens. Urbanization leads to an increased demand of drinking water supply that leads to excessive drawdown that further causes lowering of water table. The current WASA (Water and Sanitation Authority) supply network does not fulfill the demand of a growing metropolitan city of Lahore. The drawdown of Lahore is absolutely reliant on Water and Sanitation Authority (WASA) water supply network that causes numerous problems due to inappropriate management of groundwater capital and increased urbanization. This research investigates groundwater qualities: Alkalinity, Arsenic, Calcium, chloride, Total Hardness, Magnesium, Nitrate, pH and Total Dissolved solids using geographic information system (GIS). Residents of high concentrated towns, like Samnabad Town, Allama Iqbal Town, Gulberg, Data Ganj Bakhsh Town, Ravi Town and Wahga town witness cut-down of water supply mainly due to over burden on tube wells. Chemical properties of drinking water show that most of the parameters were within the allowable limits of WHO whereas the pH, and arsenic values are higher than the average. Arsenic is a carcinogenic element which causes cancer and is higher in the drinking water. Finally, this study identifies highly contaminated groundwater zones and makes it convenient to find actual pollutants. Therefore, plans are needed to protect the aquifer.展开更多
Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biolo...Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.展开更多
文摘In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic principles of electrochemical water treatment,the preparation of electrode materials,and the research progress of electrocatalytic technology for degrading organic chemical wastewater.It analyzes the problems faced by electrocatalytic degradation of organic chemical wastewater and looks forward to the development trend of electrocatalytic technology in the field of organic chemical wastewater treatment.
基金This study was supported by the National Natural Science Foundation of China[Grant No.U20A20114]the soil N losses in the greenhouse field in the Yellow River Irrigation as affected by the annual changes of groundwater depth[Grant No.41361062].
文摘The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.
基金Supported by the China Agriculture Research System(CARS49)~~
文摘Environmental endocrine disrupting chemicals (EDCs), commonly found in the environment, come from industry and agriculture, including pesticides, fungicides, insecticides, herbicides, and other chemicals. Nowadays, more and more EDCs were released into the environment. EDCs go into water body via atmosphere sedi-mentation, surface runoff, soil eluviation, etc., so water body becomes the main place for existing. In order to attract scientific and public attention worldwide and to prevent EDCs pol ution, in this study we reviewed the classification of EDCs and their concentrations in natural water bodies, drinking water sources and water plants, and the reproductive toxicity of EDCs to fish were reviewed. EDCs could disturb the endocrine system and make reproductive organs and reproduction abnor-mal, resulting in fertility descending, reproduction function damage, community quan-tity decrease and even species extinction. In addition, EDCs could disrupt the homeostasis maintained by hormones, which would result in defects of neural de-velopment and abnormalities of the endocrine and reproductive systems. The exact molecular mechanisms have not been completely reported, but researches have suggested that multiple mechanisms were involved in the action of EDCs. Although there have been researches on the biohazard of EDCs, there stil exist problems of weakness in fundamental researches, difficulties in recognizing and identifying EDCs and high cost, which restraint the knowledge on them.
基金the financial support for this research from the National High-Tech R&D Program of China (2012AA101404)the National Natural Science Foundation of China (51209208, 51479201)
文摘The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.
基金supported by National Natural Science Foundation of China (Grant No. 50575135)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology, China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.
文摘Taking streaming current(SC)as the electrokinetic parameter,this paper demon- strated the electrokinetic chemical characteristics of humic and dannic acids(HA and DA)in sus- pensions including turbid water,coagulated water and HA or DA contained water.Accordingly, the studies were carried out for determining the relationship between streaming current and zeta po- tential ζ(expressed by eleetrophoretie mobility EM)in above water conditions.In addition,the mechanisms of HA effecting on streaming current within or after coagulant addition and the elec- trokinetic detection principles for HA or DA were also investigated on experiments and theoretical analysis.The results indicated that the change of SC like ζ presented meaningful information con- cerning the degree for destabilization of a particulate suspension,and HA or DA in water could re- markably decrease the effect of inorganic coagulant upon streaming current,which is in accordance with their influence on coagulation.
文摘More and more importance has been attached to the problem of endocrine disrupting chemicals (EDCs) since 1960s. This article elaborates the recent research progress of EDCs in water and the trends in the near future in China.
基金Financial support from the National Natural Science Foundation of China (No.40772191)
文摘During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological conditions, a mercury intrusion method and scanning electron microscope were used in this study. We conclude that the loose, porous and easily collapsible clay particles of the cretaceous aquifer rock mass were the major geological cause for water hazards during the construction of the shaft. We propose an approach of chemical grouting from the working surface and in the end succeeded in blocking the water.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.40772192 and 41072237)the State Key Laboratort of Geomechanics and Deep Underground Engineering(No.SKLGDUEK0903)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100095110015)
文摘We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.
文摘Data obtained from a comprehensive multidisciplinary oceanographic survey in the central and northern parts of the Taiwan Strait, 24°20′-26°00′N, 118°45°-121°00′E by the Fujian Institute of Oceanology during the period May, 1983 through May, 1984, showed that the distributions of dissolved oxygen (DO), nitrate, dissolved inorganic phosphate and silicate concentrations here had obvious areal and seasonal characteristics that were mainly influenced by the seasonal circulation ofthree major water systems in the Taiwan Strait-- the Taiwan Strait Warm Water (TSWW), theZhejiang-Fujian Coastal Water (ZFCW), and the Northeastern Strait Warm Water (NESWW).
文摘In the process of using high-pressure flat membranes to treat coal chemical wastewater,the effects of high-pressure flat membranes on the concentration of salt ions and the removal of pollutants were studied under the conditions of different concentrations of influent TDS,COD and silicon dioxide.The results showed that when the concentration of influent TDS was 35 000-55 000 mg/L,the economic benefit of high-pressure flat membrane operation was the best,and the concentration ratio of high-pressure flat membranes was stable,varying from 3.3 to 3.6.As the concentration of influent organic matter ranged from 100 to 1 800 mg/L,the removal rate of organic matter ranged from 60% to 79%.In addition,the retention rate of high-pressure flat membranes to silicon dioxide was more than 90%.
基金This research was funded by the National Natural Science Foundation of China’s NSFC,grant number(No.41302190)China Geological project(grant nos.1212011220971 and DD20190252).
文摘This research investigated anthropogenic inputs and chemical weathering in the upper reaches of the Datong River Basin,a tributary of the upper Yellow River,NW China.Multiple approaches were applied to data from 52 water and 12 soil samples from the Muli,Jiangcang,and Mole basins to estimate the chemical component concentrations and to analyze hydrochemical characteristics,distribution patterns,and origins in this coal mining-affected river basin.Coal mining has enhanced the weathering of the lithosphere in the study region.The total dissolved solids in the river range from 145.4 to 701.9 mg/L,which is higher than the global average for rivers.Ion concentration spatial distributions increase around mining areas.River geochemistry is mainly controlled by coal mining activity,carbonate weathering,and silicate weathering,with variances of 33.4%,26.2%,and 21.3%,respectively.Ca^(2+),Mg^(2+),and HCO_(3)^(-)are mainly due to the dissolution of carbonate minerals(calcite>dolomite);Si and K+are mainly from potassium(sodium)feldspar weathering;and Na+and SO_(4)^(2-)mainly from coal mine production.A conceptual model of the river water ion origins from the study area is presented and management implications for improving the adverse effects of coal mining are proposed.These results provide an important standard reference for water resource and environmental management in the study region.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(51778170)State Key Laboratory of Urban Water Resource and Environment(2020DX04)+1 种基金Fundamental Research Funds for the Central Universities,China Postdoctoral Science Foundation(2019M651290)Heilongjiang Postdoctoral Science Foundation(LBH-Z19153).
文摘Ultrafiltration(UF)has been increasingly implemented in drinking water treatment plants;however,algae and their secretions can cause severe membrane fouling and pose great challenges to UF in practice.In this study,a simple and practical chemically enhanced backwashing(CEB)process was developed to address such issues using various cleaning reagents,including sodium hypochlorite(NaClO),sodium chloride(NaCl),sodium hydroxide(NaOH),sodium citrate,and their combinations.The results indicate that the type of chemical played a fundamental role in alleviating the hydraulically irreversible membrane fouling(HIMF),with NaClO as the best-performing reagent,followed by NaCl.Furthermore,a CEB process using a combination of NaClO with NaCl,NaOH,or sodium citrate delivered little improvement in the alleviation of membrane fouling compared with NaClO alone.The optimized dosage and dosing frequency of NaClO were 10 mg·L^(-1) two times per day.Long-term pilot-scale and full-scale experiments further verified the feasibility of the CEB process in relieving algae-derived membrane fouling.Compared with the conventional hydraulic backwashing without chemical involvement,the CEB process can effectively remove the organic foulants including biopolymers,humic substances,and proteinlike substances by means of oxidization,thereby weakening the cohesive forces between the organic foulants and the membrane surface.Therefore,the CEB process can efficiently alleviate the algae-related membrane fouling with lower chemical consumption,and is proposed as an alternative to control membrane fouling in treating the algae-containing surface water.
文摘Safe water of adequate quantity, and dignified sanitation, is vital for the sustenance of a healthy and productive human population. In the recognition of this, the United Nations formulated the Sustainable Development Goal No. 6 to ensure access to safe water and sanitation by all by 2030. Actualization of this Goal requires information on the existing status of water resources and sanitation levels. Knowledge on contamination of groundwater is essential to prevent risks to human health. The objective of this study was to determine groundwater contamination in Kisumu, Kenya. A total of 275 water samples were collected from 22 sites within the informal settlements between December 2016 and December 2017. The samples were analysed for bacterial contamination and physical chemical quality. Thermal tolerant coliform bacteria enumeration was used as a proxy to bacteria contamination, and the pH, turbidity, dissolved oxygen, conductivity, salinity and temperature were used as physical chemical indicators of contamination. The results indicate that groundwater in Kisumu hosed coliform bacteria and therefore didn’t comply with contamination limits for domestic water proposed by WHO and local KEBS standards. The results further indicated that the levels of bacteriological contamination vary with water type, shallow well having the highest bacterial loads. The study concluded that there were potential risks to human health due to high content of coliform bacteria. The study attributed the contribution to pit latrines that were present in virtually all compounds. The pit latrines are located close to the water points. The study recommended the definition of minimum distance between the pit latrines and shallow wells to minimize contamination. The low income dwellers should be educated on simple ways of treating drinking water contaminated by microbial to minimize enteric infections.
基金supported partially by Japan Society for the Promotion of Science(JSPS)KAKENHI(No.26249015)
文摘A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.
基金ThisprojecthadobtainedChinaPatent (No .ZL98 2 2 6 785 .1)
文摘A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.
文摘Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (temperature, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, electrical conductivity, flow velocity, depth, nitrate, nitrite, phosphate, ammonia, pH, turbidity, total suspended solids, total dissolved solids and colour) were analyzed and results showed that pH (6.8 to 7.26), conductivity (106.0 to 211.7 μS/cm), colour (3.87 ± 0.159 Pt.Co), turbidity (14 - 22.7 NTU), total suspended solids (45 - 54 mg/l), biochemical oxygen demand (2.05 - 2.89 mg/l), chemical oxygen demand (17.19 ± 0.15 mg/l), temperature (24°C to 27°C) and depth (0.23 to 0.35 m) were significantly different across the different stations and between the months. However, total dissolved solids (52.7 to 108.8 mg/l), dissolved oxygen (6.02 to 7.01 mg/l), ammonia (0.00 to 0.02 mg·l-1), nitrite (0.01 - 0.09 mg·l-1), nitrate (0.045 ± 0.006 mg·l-1), phosphate (0.2 to 2.05 mg·l-1) and flow velocity (0.1 to 0.35 m·s-1) showed variations within the sampling stations. Maximum conductivity (211.7 μS/cm), colour (5.83 Pt.Co), turbidity (22.7 NTU), total suspended solids (54 mg/l), total dissolved solids (108.8 mg/l), nitrite (0.09 mg/l) and nitrate (0.006 mg/l) values were recorded at station 2 which is the discharge point of industrial waste. River water did show significant pollutional increase at the effluent impacted site during the present study. Dissolved oxygen showed direct relation with temperature, biochemical oxygen demand and chemical oxygen demand. The non-stop and continuous discharges of cement waste water into the river lessened water quality with significant or corresponding effect on the biota of the studied area, thus paving way for clear assertion that the water quality deterioration was as a result of the impacts of the waste water from cement industry.
文摘The contamination of drinking water in Pakistan is a serious threat to its citizens. Urbanization leads to an increased demand of drinking water supply that leads to excessive drawdown that further causes lowering of water table. The current WASA (Water and Sanitation Authority) supply network does not fulfill the demand of a growing metropolitan city of Lahore. The drawdown of Lahore is absolutely reliant on Water and Sanitation Authority (WASA) water supply network that causes numerous problems due to inappropriate management of groundwater capital and increased urbanization. This research investigates groundwater qualities: Alkalinity, Arsenic, Calcium, chloride, Total Hardness, Magnesium, Nitrate, pH and Total Dissolved solids using geographic information system (GIS). Residents of high concentrated towns, like Samnabad Town, Allama Iqbal Town, Gulberg, Data Ganj Bakhsh Town, Ravi Town and Wahga town witness cut-down of water supply mainly due to over burden on tube wells. Chemical properties of drinking water show that most of the parameters were within the allowable limits of WHO whereas the pH, and arsenic values are higher than the average. Arsenic is a carcinogenic element which causes cancer and is higher in the drinking water. Finally, this study identifies highly contaminated groundwater zones and makes it convenient to find actual pollutants. Therefore, plans are needed to protect the aquifer.
文摘Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.