期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
The GNSS PWV retrieval using non-observation meteorological parameters based on ERA5 and its relation with precipitation
1
作者 Weifeng Yang Zhiping Chen +2 位作者 Kaiyun Lv Pengfei Xia Tieding Lu 《Geodesy and Geodynamics》 EI CSCD 2024年第3期302-313,共12页
The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. Fi... The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. First, this article evaluated the accuracy of pressure and temperature in 68 radiosonde stations in China based on ERA5 Reanalysis data from 2015 to 2019 and compared them with GPT3model. Then, the accuracy of pressure and temperature calculated by ERA5 were estimated in 5 representative IGS stations in China. And the PWV calculated by these meteorological parameters from ERA5(ERA5-PWV) were analyzed. Finally, the relation between ERA5-PWV and precipitation was deeply explored using wavelet coherence analysis in IGS stations. These results indicate that the accuracy of pressure and temperature of ERA5 is better than the GPT3 model. In radiosonde stations, the mean BIAS and MAE of pressure and temperature in ERA5 are-0.41/1.15 hpa and-0.97/2.12 K. And the mean RMSEs are 1.35 hpa and 2.87 K, which improve 74.77% and 40.58% compared with GPT3 model. The errors of pressure and temperature of ERA5 are smaller than the GPT3 model in bjfs, hksl and wuh2, and the accuracy of ERA5-PWV is improved by 18.77% compared with the GPT3 model. In addition, there is a significant positive correlation between ERA5-PWV and precipitation. And precipitation is always associated with the sharp rise of ERA5-PWV, which provides important references for rainfall prediction. 展开更多
关键词 ERA5 GNSS Precipitable water vapor precipitation Wavelet coherence analysis
下载PDF
Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso-βScale Heavy Precipitation Event During the 2002 Mei-Yu Season 被引量:2
2
作者 张盟 倪允琪 张福青 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期509-526,共18页
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be ass... Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves. 展开更多
关键词 GPS precipitable water vapor four-dimensional variational assimilation meso-β-scale con- vective system
下载PDF
Evaluation of surface temperature and pressure derived from MERRA-2 and ERA5 reanalysis datasets and their applications in hourly GNSS precipitable water vapor retrieval over China 被引量:2
3
作者 Liangke Huang Xiaoyang Fang +3 位作者 Tengxu Zhang Haoyu Wang Lei Cui Lilong Liu 《Geodesy and Geodynamics》 CSCD 2023年第2期111-120,共10页
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range... Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China. 展开更多
关键词 Temperature and pressure Global navigation satellite system Precipitable water vapor MERRA-2 ERA5
下载PDF
Decadal trends in precipitable water vapor over the Indus River Basin using ERA5 reanalysis data 被引量:1
4
作者 Seema RANI Jyotsna SINGH +2 位作者 Subhash SINGH Purushottam TIWARI Suraj MAL 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2928-2945,共18页
Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a sig... Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning. 展开更多
关键词 HIMALAYA Precipitable water Vapor Indus River Basin ATMOSPHERE Climate Change ERA5 Reanalysis data
下载PDF
Change Features of GPS/MET Precipitable Water Vapor in Different Precipitation in Lianyungang
5
作者 Hao Ling Zhao Liang +2 位作者 Zhu Minhua Bai Xue Ma Chenchen 《Meteorological and Environmental Research》 CAS 2015年第7期1-4,9,共5页
Based on the GPS/MET water vapor monitoring data and conventional meteorological data at Lianyungang station from April to July, 2015, the relationship between precipitable water vapor and real precipitation was studi... Based on the GPS/MET water vapor monitoring data and conventional meteorological data at Lianyungang station from April to July, 2015, the relationship between precipitable water vapor and real precipitation was studied. According to different precipitation, change trends of precipitable water vapor in convective precipitation and steady precipitation were analyzed. Results showed that necessary condition of precipitation generation was high precipitable water vapor value in the air. Precipitable water vapor change presented wave-shape and phased characters. In convection precipitation, precipitable water vapor changed frequently and had larger change amplitude, while its change was slow in steady precipi- tation. The appearing time of the maximum values of rainfall intensity and precipitable water vapor was not necessarily consistent, but it was known that severe rainfall usually began at the high-value stage of precipitable water vapor, and high-value stage of precipitable water vapor often corresponded to higher precipitation probability. In addition, precipitable water vapor showed different characteristics in the above two different precipitation, and these results could provide a reference for precipitation forecast. 展开更多
关键词 GPS/MET Precipitable water vapor Variation features China
下载PDF
Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains,Central Asia
6
作者 CHEN Haiyan CHEN Yaning +2 位作者 LI Dalong LI Weihong YANG Yuhui 《Journal of Arid Land》 SCIE CSCD 2022年第3期297-309,共13页
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing wit... Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles. 展开更多
关键词 Tianshan Mountains Manas River Basin water vapor sources of precipitation land cover precipitation stable isotopes Hybrid Single-Particle Lagrangian Integrated Trajectory
下载PDF
Rising trends of global precipitable water vapor and its correlation with flood frequency
7
作者 Dong Ren Yong Wang +1 位作者 Guocheng Wang Lintao Liu 《Geodesy and Geodynamics》 EI CSCD 2023年第4期355-367,共13页
Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained... Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained using the ERA5 and JRA55 data sets are 0.19 ± 0.01 mm per decade(1.15 ± 0.31%)and 0.23 ± 0.01 mm per decade(1.45 ± 0.32%), respectively. The PWV trends obtained using the ERA5,JRA55, NCEP-NCAR, and NCEP-DOE data sets are 0.22 ± 0.01 mm per decade(1.18 ± 0.54%),0.21 ± 0.00 mm per decade(1.76 ± 0.56%), 0.27 ± 0.01 mm per decade(2.20 ± 0.70%) and 0.28 ± 0.01 mm per decade(2.19 ± 0.70%) for the period 1979-2020. During 2000-2020, the PWV trends obtained using ERA5, JRA55, NCEP-DOE, and NCEP-NCAR data sets are 0.40 ± 0.25 mm per decade(2.66 ± 1.51%),0.37 ± 0.24 mm per decade(2.19 ± 1.54%), 0.40 ± 0.26 mm per decade(1.96 ± 1.53%) and 0.36 ± 0.25 mm per decade(2.47 ± 1.72%), respectively. Rising PWV has a positive impact on changes in precipitation,increasing the probability of extreme precipitation and then changing the frequency of flood disasters.Therefore, exploring the relationship between PWV(derived from ERA5 and JRA55) change and flood disaster frequency from 1958 to 2020 revealed a significant positive correlation between them, with correlation coefficients of 0.68 and 0.79, respectively, which explains the effect of climate change on the increase in flood disaster frequency to a certain extent. The study can provide a reference for assessing the evolution of flood disasters and predicting their frequency trends. 展开更多
关键词 Precipitable water vapor(PWV) Linear trend Correlation analysis Flood frequency
下载PDF
Seasonal Difference of the Spatio-Temporal Variation of Precipitable Water Vapor in China
8
作者 Qixu Li Qianqian Song +1 位作者 Zhitong Qian Ying Huang 《Journal of Geoscience and Environment Protection》 2023年第5期159-173,共15页
This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and a... This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and atmospheric pressure at various altitudes of 102 radiosonde stations were utilized. The analysis involved calculating and examining the PWV variations across the different seasons in the study period. The results are illustrated as follows: 1) The annual mean and seasonal mean PWV over China is characterized by decreasing from southeast to northwest. The PWV has obvious seasonal features. It is the least in winter, which is mainly affected by latitude and altitude, and the most in summer, which is mainly affected by the monsoon. It is the medium in spring and autumn, with more in autumn than in spring. 2) The spatial distribution pattern of four seasonal PWV is approximately opposite to its variation coefficient distribution pattern, that is, the monsoon (non-monsoon) areas with more (less) PWV have a smaller (larger) variation amplitude. 3) The distribution pattern of four seasonal PWV shows a consistent distribution pattern in the whole region and the winter characteristics are the most significant. The abnormal variation of PWV shows consistent interdecadal oscillation, and it exhibits an obvious phase transition around 2002 when the PWV has an increasing shift in winter, spring, and summer, while it is more complicated in autumn. 展开更多
关键词 Precipitable water Vapor Distribution Characteristics Four Seasons
下载PDF
Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval 被引量:4
9
作者 Eun-Han KWON Elisabeth WEISZ 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第2期263-273,共11页
This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared ... This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared (IR) sounders. Temperature and water vapor profiles are retrieved from Atmospheric InfraRed Sounder (AIRS) radiance measurements by applying a physical iterative method using regression retrieval as the first guess. Based on the dependency of first-guess errors on the degree of atmospheric moistness, the a priori first-guess errors classified by total precipitable water (TPW) are applied in the AIRS physical retrieval procedure. Compared to the retrieval results from a fixed a priori error, boundary layer moisture retrievals appear to be improved via TPW classification of a priori first-guess errors. Six quality control (QC) tests, which check non-converged or bad retrievals, large residuals, high terrain and desert areas, and large temperature and moisture deviations from the first guess regression retrieval, are also applied in the AIRS physical retrievals. Significantly large errors are found for the retrievals rejected by these six QCs, and the retrieval errors are substantially reduced via QC over land, which suggest the usefulness and high impact of the QCs, especially over land. In conclusion, the use of dynamic a priori error information according to atmospheric moistness, and the use of appropriate QCs dealing with the geographical information and the deviation from the first-guess as well as the conventional inverse performance are suggested to improve temperature and moisture retrievals and their applications. 展开更多
关键词 atmospheric sounding AIRS total precipitable water a priori error quality control
下载PDF
Properties of Cloud and Precipitation over the Tibetan Plateau 被引量:7
10
作者 WANG Chenghai SHI Hongxia +2 位作者 HU Haolin WANG Yi XI Baike 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1504-1516,共13页
The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitati... The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF (empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content (CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TE Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TE The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions. 展开更多
关键词 cloud liquid water content cloud ice water content precipitable liquid water Tibetan Plateau
下载PDF
Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta 被引量:3
11
作者 丁金才 杨引明 +4 位作者 叶其欣 黄炎 马晓星 马雷鸣 Y. R. GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期409-420,共12页
A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this papers the roles of moisture in the genesis ... A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this papers the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The "+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later. 展开更多
关键词 squall line global positioning system (GPS) precipitable water vapor (PWV)
下载PDF
Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China 被引量:7
12
作者 Liang Hong Cao Yunchang +3 位作者 Wan Xiaomin Xu Zhifang Wang Haishen Hu Heng 《Geodesy and Geodynamics》 2015年第2期135-142,共8页
In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sit... In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content. 展开更多
关键词 Precipitable water vapor (PWV) Global navigation satellite system(GNSS) Crustal Movement ObservationNetwork of China (CMONOC)China meteorological administra-tion GNSS network (CMAGN) water vapor radiometers (WVR) Quality control Meteorological application Assimilation
下载PDF
Water Vapor Retrievals from Near-infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument onboard the Fengyun-3D Satellite 被引量:1
13
作者 Ling WANG Xiuqing HU +1 位作者 Na XU Lin CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1351-1366,共16页
Water vapor plays a key role in weather, climate and environmental research on local and global scales. Knowledge about atmospheric water vapor and its spatiotemporal variability is essential for climate and weather r... Water vapor plays a key role in weather, climate and environmental research on local and global scales. Knowledge about atmospheric water vapor and its spatiotemporal variability is essential for climate and weather research. Because of the advantage of a unique temporal and spatial resolution, satellite observations provide global or regional water vapor distributions. The advanced Medium Resolution Spectral Imager (MERSI) instrument-that is, MERSI-II-onboard the Fengyun-3D (FY-3D) meteorological satellite, has been one of the major satellite sensors routinely providing precipitable water vapor (PWV) products to the community using near-infrared (NIR) measurements since June 2018. In this paper, the major updates related to the production of the NIR PWV products of MERSI-II are discussed for the first time. In addition, the water vapor retrieval algorithm based on the MERSI-II NIR channels is introduced and derivations are made over clear land areas, clouds, and sun-glint areas over the ocean. Finally, the status and samples of the MERSI-II PWV products are presented. The accuracy of MERSI-II PWV products is validated using ground-based GPS measurements. The results show that the accuracies of the water vapor products based on the updated MERSI-II instrument are significantly improved compared with those of MERSI, because MERSI-II provides a better channel setting and new calibration method. The root- mean-square error and relative bias of MERSI-II PWV products are typically 1.8-5.5 mm and −3.0% to −14.3%, respectively, and thus comparable with those of other global remote sensing products of the same type. 展开更多
关键词 precipitable water vapor FY-3D MERSI GPS
下载PDF
Seasonal Variations in the Vertical Structure of Water Vapor Optical Depth in the Lower Troposphere over a Tropical Station 被引量:1
14
作者 P. Ernest Raj and P.C.S. Devara Indian Institute of Tropical Meteorology, Pune-411008, India 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第1期104-111,共8页
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. ... Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean vertical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Relative Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the largest at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon. 展开更多
关键词 Optical depth Precipitable water
下载PDF
Evaluation of ocean tide loading effects on GPS-estimated precipitable water vapour in Turkey 被引量:2
15
作者 Ourbuz Gokhan Shuanggen Jin 《Geodesy and Geodynamics》 2016年第1期32-38,共7页
Global Positioning System (GPS) has been widely used to estimate the total zenith tropo- spheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and at- mospheric research as a continuous ... Global Positioning System (GPS) has been widely used to estimate the total zenith tropo- spheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and at- mospheric research as a continuous and all-weather technique. However, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models of inland seas in Turkey. In this paper, GPS data from Jan. 1, 2010 to Dec. 31, 2011 are processed using GAMIT/GLOBK at four co-located GPS stations (ISTN, ERZR, SAMN, and IZMI) with Radiosonde from the Turkish Met-Office together with several nearby IGS stations. Four widely used ocean tide models are adopted to evaluate their effects on GPS-estimated PWV, such as IERS recommended FES2004, NAO99b, CSR4.0 and GOT00. Five different strategies are taken without ocean tide model and with four ocean tide models, respectively, which are used to evaluate ocean tide models effects on GPS-estimated PWV through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the pre- cipitable water vapour at stations near coasts. The ocean tide model FES2004 gave the best results when compared to Radiosonde with +2.12 mm in PWV at stations near coastline. While other ocean tides models agree each other at millimeter level in PWV. However, at inland GPS stations, ocean tide models have less effect on GPS-estimated PWV. 展开更多
关键词 Precipitable water vapour (PWV)Ocean tide modelsGPSRadiosonde
下载PDF
Empirical model for mean temperature and assessment of precipitable water vapor derived from GPS
16
作者 Tang Yanxin Liu Lilong Yao Chaolong 《Geodesy and Geodynamics》 2013年第4期51-56,共6页
The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The ap... The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The applicability of Saastamoinen (SAAS), Hopfield and Black models used for estimating Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) and different models is verified in the estimation of GPS-derived PWV for the applied area. The experimental results demonstrated that : 1 ) the precision of PWV estimated from Black model used for calculating ZHD ( ZHDs ) is lower than that of SAAS ( ZHDsAAs ) model and Hopfield model (ZHDn) with the RMS of 4. 16 ram; 2) the RMS of PWV estimated from SAAS model used for calculating ZWD (SAAS) is 3.78 ram; 3 ) the well-known Bevis model gives similar accuracy compared with the site-specific models for Tm in terms of surface temperature ( Ts ) and surface pressure (Ps), which can reach the accuracy inside 1 mm in the GPS-derived PWV estimates. 展开更多
关键词 GPS radiosonde data Zenith Hydrostatic Delay (ZHD) Zenith Wet Delay(ZWD) the weighted mean temperature of the atmosphere Precipitable water Vapor(PWV)
下载PDF
Diurnal variation of precipitable water vapor over Central and South America
17
作者 Amalia Meza Luciano Mendoza +2 位作者 María Paula Natali Clara Bianchi Laura Fernández 《Geodesy and Geodynamics》 2020年第6期426-441,共16页
Annual and seasonal diurnal precipitable water vapor(PWV)variations over Central and South America are analyzed for the period 2007-2013.PWV values were obtained from Global Navigation Satellite Systems(GNSS)observati... Annual and seasonal diurnal precipitable water vapor(PWV)variations over Central and South America are analyzed for the period 2007-2013.PWV values were obtained from Global Navigation Satellite Systems(GNSS)observations of sixty-nine GNSS tracking stations.Histograms by climate categories show that PWV values for temperate,polar and cold dry climate have a positive skewed distribution and for tropical climates(except for monsoon subtype)show a negative skewed distribution.The diurnal PWV and surface temperatures(T)anomaly datasets are analyzed by using principal components analysis(PCA).The first two modes represent more than 90%of the PWV variability.The first PCA mode of PWV variability shows a maximum amplitude value in the late afternoon few hours later than the respective values for surface temperature(T),therefore the temperature and the surface conditions(to yield evaporation)could be the main agents producing this variability;PWV variability in inland stations are mainly represented by this mode.The second mode of PWV variability shows a maximum amplitude at midnight,a possible explanation of this behavior is the effect of the sea/valley breeze.The coastal and valley stations are affected by this mode in most cases.Finally,the"undefined"stations,surrounded by several water bodies,are mainly affected by the second mode with negative eigenvectors.In the seasonal analysis,both the undefined and valley stations constitute the main cases that show a sea or valley breeze only during some seasons,while the rest of the year they present a behavior according to their temperature and the surface conditions.As a result,the PCA proves to be a useful numerical tool to represent the main sub-daily PWV variabilities. 展开更多
关键词 Precipitable water vapor(PWV) Global navigation satellite systems(GNSS) Koppen and Geiger climate type classification(K-G) Surface temperature Principal component analysis(PCA)
下载PDF
The Preliminary Study on the Converting Measures between the Four Waters in Wet and Low-lying Farmland
18
作者 KANGBai-ying WEIYong-xia GUODa-ben 《Journal of Northeast Agricultural University(English Edition)》 CAS 2003年第1期66-68,共3页
Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organize... Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for these farmlands.The aim was to change the water resources regime to one that was beneficial to crop production.Arterial drainage,field drainage and appropriate sub soil treatments were required.The relation between plant products industry and the Four Waters distribution,also the main measures of the Four Waters converting in wet and low lying farmland were discussed in the paper. 展开更多
关键词 wet and low lying farmland precipitation surface water soil water ground water converting measure
下载PDF
Analysis of Precipitation Resource and Weather Modification Potential in Anyang
19
作者 Ma Jing 《Meteorological and Environmental Research》 CAS 2016年第2期12-14,共3页
Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution... Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City. 展开更多
关键词 water vapor pressure Atmospheric precipitable water Natural precipitation yield ratio Rainfall enhancement potential China
下载PDF
Characteristics of Cloud Water Resource and Precipitation Efficiency of Hydrometeors over Northwest China
20
作者 Zhanyu YAO Lin AN +4 位作者 Pei ZHANG Liangshu GAO Shuo JIA Weijian WANG Wenhui ZHAO 《Journal of Meteorological Research》 SCIE CSCD 2023年第3期353-369,共17页
Understanding the characteristics of cloud water resource(CWR)and precipitation efficiency of hydrometeors(PEh)is imperative for the application of CWR in Northwest China.The atmospheric precipitable water(PW)in all f... Understanding the characteristics of cloud water resource(CWR)and precipitation efficiency of hydrometeors(PEh)is imperative for the application of CWR in Northwest China.The atmospheric precipitable water(PW)in all four seasons and clouds and PEh in summer were studied with ERA-5 and CloudSat data in this region.The results show that topography,especially in the Tibetan Plateau,exerts significant impacts on the precipitation and PW in summer,since large amounts of clouds are distributed along the mountain ranges.The study region is divided into four typical areas:the monsoon area in eastern Northwest China(NWE),the Qilian Mountains area(QM),the Tianshan Mountains area(TM),and the Source of Three Rivers area(STR).Over the four areas,cloud top height(6.3 km)and cloud base height(3.3 km)over NWE are higher,and precipitating clouds are thicker(7 km)in the single-layer clouds.Liquid water content decreases with increasing altitude,while the ice water content first increases and then decreases.Liquid water path is higher over NWE(0.11 kg m^(−2))than over TM and STR(0.05 kg m^(−2)),and the ice water path is mainly concentrated within the range of 0.025–0.055 kg m^(−2).The PEh values are distributed unevenly and affected evidently by the terrain.Although the PEh values in the four typical areas(0.3–0.6)are higher than those in other regions,the CWR is relatively abundant and has a higher exploitation potential.Therefore,it is well-founded to exploit CWR for alleviating water shortages in these areas of Northwest China in summer. 展开更多
关键词 cloud water resource(CWR) precipitation efficiency of hydrometeors(PEh) precipitable water(PW) CLOUD Northwest China
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部