期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions
1
作者 Yan Liu Tianli Sun +1 位作者 Bencheng Wang Yan Feng 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1165-1180,共16页
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte... A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small. 展开更多
关键词 Tight sandstone gas reservoir fracture propagation flowback rate gas production law water production law influencing factor
下载PDF
Optimized Operation of a Solar-Driven Thermoelectric Dehumidification System for Fresh Water Production
2
作者 Muhyiddine Jradi Nesreen Ghaddar Kamel Ghali 《Journal of Energy and Power Engineering》 2012年第6期878-891,共14页
The work presents a parametric analysis of the performance of a solar-driven thermoelectric system to dehumidify air and produce fresh water. The system is combined with a solar distiller humidifying ambient air to en... The work presents a parametric analysis of the performance of a solar-driven thermoelectric system to dehumidify air and produce fresh water. The system is combined with a solar distiller humidifying ambient air to enhance distillate output to meet the specified fresh water needs for a residential application. The presented system is a totally renewable energy-based system taking advantage of the clean solar energy. A model is developed to simulate the air dehumidification process using TEC (thermoelectrically cooled) channels. An optimization problem for setting system operational parameters is formulated to meet the fresh water requirement of 10 liters per day for a typical residential application in the Lebanese coastal humid climate. Using five TEC channels of length of 1.2 m and area of 0.07 - 0.05 m^2 integrated with 1.2 m^2 solar distiller is capable of meeting the water demand, where the air mass flow rate introduced to each TEC channel is optimally set at 0.0155 kg/s. The optimal electrical current input to the TEC modules from the photovoltaic solar panels varied depending on the month and is set at 2.2 A in June, 2.1 A in July and 2.0 A in August, September and October per each TEC module. 展开更多
关键词 Thermoelectric cooling humidification/dehumidification process solar energy water production design and optimization.
下载PDF
Consistency of Water Production Function Models of Two Crops 被引量:1
3
作者 樊鹏 王莹 +1 位作者 杨青伟 杨喜会 《Agricultural Science & Technology》 CAS 2016年第1期12-14,共3页
On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent grow... On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model. 展开更多
关键词 water production function Parabolic model Jensen model CONSISTENCY
下载PDF
Effects of mulches on water use in a winter wheat/summer maize rotation system in Loess Plateau, China 被引量:3
4
作者 YIN Minhua LI Yuannong +1 位作者 XU Yuanbo ZHOU Changming 《Journal of Arid Land》 SCIE CSCD 2018年第2期277-291,共15页
Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwat... Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas. 展开更多
关键词 MULCH soil moisture crop water consumption water productivity winter wheat/summer maize rotation
下载PDF
Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China 被引量:5
5
作者 RAN Hui KANG Shaozhong +4 位作者 LI Fusheng DU Taisheng DING Risheng LI Sien TONG Ling 《Journal of Arid Land》 SCIE CSCD 2017年第4期504-514,共11页
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie... Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China. 展开更多
关键词 water use efficiency water stress nitrogen use efficiency evapotranspiration water productivity for yield water productivity for biomass arid region
下载PDF
The effects of aeration and irrigation regimes on soil CO_2 and N_2O emissions in a greenhouse tomato production system 被引量:13
6
作者 CHEN Hui HOU Hui-jing +4 位作者 WANG Xiao-yun ZHU Yan Qaisar Saddique WANG Yun-fei CAI Huan-jie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期449-460,共12页
Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two cons... Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique. Four treatments, aerated deficit irrigation(AI1), non-aerated deficit irrigation(CK1), aerated full irrigation(AI2) and non-aerated full irrigation(CK2), were performed. The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation(P〈0.05). Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation. Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season(P〈0.05). A slight increase of CO2 emissions in the two seasons was observed under full irrigation(P〉0.05). There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season. Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment(P〈0.05). Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes. Soil temperature, soil moisture and NO3^- were the primary factors influencing N2O fluxes. Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields. 展开更多
关键词 aerated irrigation water management greenhouse gas emissions tomato production system yield
下载PDF
Technology and Practice of Stabiliing Oil Production and Controlling Water Cut in Kalamkas Oilfield in Central Asia 被引量:1
7
作者 Qiu Lin 《China Oil & Gas》 CAS 2015年第4期48-54,共7页
In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the di... In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects. 展开更多
关键词 Oil production stabilization and water cut control Remaining oil Flooding pattern improvement Horizontal well Sidetracking horizontal well COUNTERMEASURE
下载PDF
Influence of Crop Nutrition on Grain Yield,Seed Quality and Water Productivity under Two Rice Cultivation Systems
8
作者 Y.V.SINGH K.K.SINGH S.K.SHARMA 《Rice science》 SCIE 2013年第2期129-138,共10页
The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of mo... The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation.With this background,SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute,New Delhi,India during two wet seasons (2009-2011).In the experiment laid out in a factorial randomized block design,two methods of rice cultivation [conventional transplanting (CT) and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44) were used under seven crop nutrition treatments,viz.T 1,120 kg/hm2 N,26.2 kg/hm2 P and 33 kg/hm2 K;T 2,20 t/hm2 farmyard manure (FYM);T 3,10 t/hm2 FYM+ 60 kg/hm2 N;T 4,5 t/hm2 FYM+ 90 kg/hm2 N;T 5,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.5 kg/hm2 blue green algae (BGA);T 6,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.0 t/hm2 Azolla,and T 7,N 0 P 0 K 0 (control,no NPK application) to study the effect on seed quality,yield and water use.In SRI,soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2-3 cm) was maintained during the reproductive phase of rice,however,in CT,standing water was maintained in crop growing season.Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI.Seed quality was superior in SRI as compared to CT.Integrated nutrient management (INM) resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties.Grain yield attributes such as number of effective tillers per hill,panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone.Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer.The grain yield and its attributes of Pusa 44 were significantly higher than those of Pusa Basmati 1.The seed quality parameters like germination rate and vigor index as well as N uptake and soil organic carbon content were higher in INM than those in chemical fertilizer alone.CT rice used higher amount of water than SRI,with water saving of 37.6% to 34.5% in SRI.Significantly higher water productivity was recorded in SRI as compared to CT rice. 展开更多
关键词 RICE crop nutrition grain yield seed quality system of rice intensification water productivity
下载PDF
Photothermal-photocatalytic thin-layer flow system for synergistic treatment of wastewater
9
作者 Zhongjiao Zha Jun Wu +1 位作者 Shaoping Tong Xuebo Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期120-129,共10页
The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocata... The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage. 展开更多
关键词 Wastewater disposal Solar-driven distill Thin-layer flow Clean water production Ternary film
下载PDF
Characterization of Water Production and Its Implication to Forest Management
10
作者 Nuray Misir Mehmet Misir 《Journal of Environmental Science and Engineering(B)》 2012年第8期993-1002,共10页
Nowadays, forests are being managed for multiple uses. The basic requirement of multiple use forestry is to identify and quantify forest values and to determine management objectives. The priorities of management obje... Nowadays, forests are being managed for multiple uses. The basic requirement of multiple use forestry is to identify and quantify forest values and to determine management objectives. The priorities of management objectives, however, must be decided. In this study, a model predicting water production for multi-objective forest management was developed. The model was based on data from permanent sample plots. The data were gathered from 132 sample plots. Approximately 80% of the observations were used for model development and 20% for validation. The model was designed for even-aged forests, as well as for forests with mixed and pure species composition. The explicatory variable in the model was number of trees. All parameter estimates were found highly significant (P 〈 0.001) in predicting water production. The model fit and validation tests were fairly good. The water production model presented in this study was considered to have an appropriate level of reliability. planning, but, it should be limited to the conditions for which the data It can be used in the overall multi-objective forest management were gathered. 展开更多
关键词 Forest values water production regression analysis multi-objective planning.
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
11
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) Air-cooled microturbines Distributed energy generation water for energy production Net metering
下载PDF
Effect of water fluctuation on agricultural production in the Huang-Huai-Hai Plain, China
12
作者 WU Kai, TANG Deng-yin, XIE Xian-qun(Institute of Geography, Chinese Academy of Sciences, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 1999年第3期313-316,共4页
The biggest load of water resources for agricultural economy in the Huang-Huai Plainwill only arcount for 67.1 % of the forecasted irrigated area in 2010. The irrigated area and thequantity of water diverting from the... The biggest load of water resources for agricultural economy in the Huang-Huai Plainwill only arcount for 67.1 % of the forecasted irrigated area in 2010. The irrigated area and thequantity of water diverting from the Huanghe River was 2.2 million hm2 and 10.8 billion m3respectively in the lowe reaches of the river in the 1990s. The annual amount of yield increase forgrain is 6.3 billion kg calculated by converting and the annual benefit of yield-increase is 4.4 billionRMB yuan in the irrigated area of the region. The daily economic losses of industry and agricultureby absence of flow in the area in the 1990s is 44. 1 million RMB yuan. The annual water quantity willbe increased by 9.9 billion m3 after diverting water from the Huanghe River and 12.6 billion m3 afterdiverting water from the Changjiang River respectively in the plain in 2010. 展开更多
关键词 the Huang-Huai-Hai Plain water fluctuation agricultural production
下载PDF
The Industrial Production of Water Dedicated to Absorption of Gases
13
作者 Ihar Yelkin Edward Reszke +1 位作者 Grzegorz Binkiewicz Grzegorz Schroeder 《Journal of Water Resource and Protection》 2021年第8期632-653,共22页
The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagne... The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the <sup>17</sup>O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO<sub>2</sub>, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water. 展开更多
关键词 Flow-Through Plasma Reactor for water Treatment Modification of the Properties of water/Aqueous Solutions Industrial production of water Physicochemical Parameters of water Solution
下载PDF
Trade-offs and synergies between ecosystem services in Yutian County along the Keriya River Basin,Northwest China
14
作者 ZUBAIDA Muyibul 《Journal of Arid Land》 SCIE CSCD 2024年第7期943-962,共20页
The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,cl... The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas. 展开更多
关键词 ecosystem services trade-offs SYNERGIES water yield food production habitat quality wind and sand prevention Tarim Basin
下载PDF
Generation of input spectrum for electrolysis stack degradation test applied to wind power PEM hydrogen production
15
作者 Yanhui Xu Guanlin Li +1 位作者 Yuyuan Gui Zhengmao Li 《Global Energy Interconnection》 EI CSCD 2024年第4期462-474,共13页
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current... Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy. 展开更多
关键词 Hydrogen production by electrolysis of water Wind power Proton exchange membrane electrolyzer Gaussian mixture model Cyclic operating condition
下载PDF
Influential Factors of Water Productivity of Maize in Oasis of Arid Areas——A Case Study of Linze County
16
作者 胡广录 张济世 樊立娟 《Agricultural Science & Technology》 CAS 2012年第9期1854-1858,共5页
[Objective] The aim was to research influential factors of water productivity of maize in oasis in arid areas. [Method] In middle reach of Heihe River in Linze County of Zhangye City, maize, a major crop in irrigated ... [Objective] The aim was to research influential factors of water productivity of maize in oasis in arid areas. [Method] In middle reach of Heihe River in Linze County of Zhangye City, maize, a major crop in irrigated area in the oasis, was studied and nine influential factors were chosen through grey relation analysis. [Result] According to grey relation analysis, top five factors influencing water produc- tivity of maize during 1995-2009 were as follows: applied quantity of chemical fertil- izers〉labour input〉seeds〉mulch amount〉pesticide amount, which indicated that controllable factors, instead of uncontrollable ones, dominate in influence of water productivity of maize in oasis in arid areas. [Conclusion] With water resource limited, investment of controllable factors in high-efficient agricultural production should be the major strategy to improve water productivity of maize in oasis of arid areas. 展开更多
关键词 MAIZE water productivity Influential factors Gray relation analysis Irri-gated areas in oasis
下载PDF
Effect of irrigation regime on grain yield,water productivity,and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation 被引量:9
17
作者 Zhiqin Wang Daojian Gu +4 位作者 Sarah S.Beebout Hao Zhang Lijun Liu Jianchang Yang Jianhua Zhang 《The Crop Journal》 SCIE CAS CSCD 2018年第5期495-508,共14页
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr... Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system. 展开更多
关键词 Rice(Oryza sativa L.) Dry direct-seeding Alternate wetting and drying Furrow irrigation water productivity Methane emission
下载PDF
Influence of Seed Priming on Performance and Water Productivity of Direct Seeded Rice in Alternating Wetting and Drying 被引量:6
18
作者 Hafeez Ur REHMAN Muhammad KAMRAN +2 位作者 Shahzad Maqsood Ahmed BASRA Irfan AFZAL Muhammad FAROOQ 《Rice science》 SCIE CSCD 2015年第4期189-196,共8页
Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated t... Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD) in comparison with direct seeded rice at field capacity (DSR- FC). Seed priming treatments were osmo-priming with KCI (2.2%), CaCI2 (2.2%) and moringa leaf extracts (MLE, 3.3%) including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCI2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCI2 in DSR- AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCI2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCI2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation. 展开更多
关键词 crop establishment grain filling rate seed priming water productivity YIELD direct seededrice alternating wetting and drying grain quality
下载PDF
Effect of NPK Application on Yield,Nutrients and Water Utilization Under Sudangrass and Ryegrass Rotation Regime 被引量:8
19
作者 LI Wen-xi LU Jian-wei +1 位作者 CHEN Fang LI Xiao-kun 《Agricultural Sciences in China》 CSCD 2010年第7期1026-1034,共9页
Sudangrass and ryegrass rotation is a new type of cropping system in Jianghan Plain,which develops very fast in recent years.So,it is essential to work out the optimal nutrients and water management measures in this n... Sudangrass and ryegrass rotation is a new type of cropping system in Jianghan Plain,which develops very fast in recent years.So,it is essential to work out the optimal nutrients and water management measures in this new system.The effect of NPK fertilizer on yield of forage grass,nutrients and water utilization under sudangrass and ryegrass rotation was studied through continuous pot experiments for three years.The results showed that NPK combination could significantly improve the yield of forage grasses.The total yields during the periods of 2005-2006,2006-2007 and 2007-2008 were 1 690.0,2 091.3 and 1 770.7 g/pot,respectively.The yields in PK treatment were 700.7,1 256.9 and 856.3% lower than those of NPK treatment,while the yields in NK treatment were 426.3,384.9 and 792.3% lower than those of NPK treatment,respectively.Similarly,the yields in NP treatment were 15.9,4.4 and 10.6% lower than those of NPK treatment,respectively.The NPK combination was found to improve the nutrients uptake,and the total N uptakes during the above periods were 10.0,14.8 and 10.6 times higher than that of PK treatment,respectively,and 3.7,1.8 and 5.1 times higher than those of NK treatment,respectively,but,were similar to NP treatment.The total P uptakes were 4.6,6.8 and 5.3 times higher than those of PK treatment,and were 2.4,2.3 and 2.9 times higher than those of NK treatment,respectively,but were similar to NP treatment.The total K uptakes were 5.2,8.4 and 4.9 times higher than that of PK treatment,3.9,2.3 and 3.9 times higher than those of NK treatment,and 80.9,57.4 and 200.5% higher than those of NP treatment,respectively.Water productivity for three years time periods were 16.5,16.1 and 16.2 kg m-3,and were 3.8,5.4 and 4.2 times higher than those of PK treatment,2.3,1.3 and 2.6 times higher than those of NK treatment,and were 16.4,8.8 and 22.4% higher than those of NP treatment,respectively.The soil pH was decreased and soil organic matter was increased in all treatments with increase in the time of sudangrass and ryegrass rotation system.The total soil N was increased in NP,NK and NPK treatments,while it was stable in PK treatment.The available P in NP,PK and NPK treatments was increased significantly,while it was stable in NK treatment.The slow releasing K and available K were increased significantly in NK and PK treatments,but decreased in NP and NPK treatments.The treatment with NPK combination was found to improve the yield of forage,nutrient uptake and soil fertility in sudangrass and ryegrass rotation system. 展开更多
关键词 sudangrass and ryegrass rotation system NPK fertilizer nutrient uptake water productivity soil nutrition
下载PDF
Effect of Phosphorus and Irrigation Levels on Yield,Water Productivity,Phosphorus Use Efficiency and Income of Lowland Rice in Northwest Pakistan 被引量:4
20
作者 Khalid USMAN 《Rice science》 SCIE 2013年第1期61-72,共12页
With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were cond... With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were conducted in 2003 and 2004 to investigate the effect of phosphorus and irrigation levels on yield, water productivity (WP), phosphorus use efficiency (PUE) and income of low land rice. The experiment was laid out in randomized complete block design with split plot arrangements replicated four times. Main plot consisted of five phosphorus levels, viz. 0 (P0), 50 (P50), 100 (P100), 150 (P15o), and 200 (P200) kg/hm2, while subplots contained of irrigation times, i.e. 8 (I8), 10 (I10), 12 (I12), and 14 (I14) irrigation levels, each with a water depth of 7.5 cm. Mean values revealed that P150 in combination with I10 produced the highest paddy yield (9.8 t/hm2) and net benefit (1 231.8 US$/hm2) among all the treatments. Phosphorus enhanced WP when applied in appropriate combination with irrigation level. The highest mean WP [13.3 kg/(hm2-mm)] could be achieved at Plso with 18 and decreased with increase in irrigation level, while the highest mean PUE (20.1 kg/kg) could be achieved at P100 with I10 and diminished with higher P levels. The overall results indicate that P150 along with I10 was the best combination for sustainable rice cultivation in silty clay soil. 展开更多
关键词 virrigation level PHOSPHORUS phosphorus use efficiency RICE water productivity YIELD
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部