On the occasion of the 80th anniversary of Nanjing Hydraulic Research Institute (NHRI) in 2015, NHRI would like to express its cordial gratitude and high respect to leaders at all levels, domestic and overseas alumn...On the occasion of the 80th anniversary of Nanjing Hydraulic Research Institute (NHRI) in 2015, NHRI would like to express its cordial gratitude and high respect to leaders at all levels, domestic and overseas alumni and people from all walks of life who have shown concem for and provided support to the construction and development of NHRI over the long term.展开更多
On the occasion of the 80^th anniversary of Nanjing Hydraulic Research Institute(NHRI)in 2015,NHRI would like to express its cordial gratitude and high respect to leaders at all levels,domestic and overseas alumni a...On the occasion of the 80^th anniversary of Nanjing Hydraulic Research Institute(NHRI)in 2015,NHRI would like to express its cordial gratitude and high respect to leaders at all levels,domestic and overseas alumni and people from all walks of life who have shown concern for and provided support to the construction and development of NHRI over the long term.展开更多
There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged ...There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged as a new approach that enables joint problem solving among scientists and stakeholders in various fields. In this paper, we aim to introduce transdisciplinary research for supporting the integration of the concept of eco- system services into land and water management in the Tarim River Basin, Xinjiang, Northwest China. While a large number of ecosystem service studies have helped to raise the awareness for the value of nature in China, a number of challenges remain, including an improved understanding of the relationships between ecosystem structure, functions and services, and the interaction of the various ecosystem services. A meaningful valuation of ecosystem services also requires the consideration of their strong spatial heterogeneity. In addition, ways to introduce the con- cept of ecosystem services into decision-making in China need to be explored. Thus, successful integration of the concept of ecosystem services into actual land and water management requires a broad knowledge base that only a number of scientific disciplines and stakeholders can provide jointly, via a transdisciplinary research process. We regard transdisciplinary research as a recursive process to support adaptive management that includes joint knowledge generation and integration among scientists and stakeholders. System, target, and transformation knowledge are generated and integrated during the process of (1) problem (re)definition, (2) problem analysis and strategy development, and (3) evaluation of the impact of the derived strategy. Methods to support transdisciplinary research comprise participatory modelling (actor-based modelling and Bayesian Networks modelling) and partici- patory scenario development. Actor-based modelling is a semi-quantitative method that is based on the analysis of problem perspectives of individual stakeholders as depicted in perception graphs. With Bayesian Networks, com- plex problem fields are modelled probabilistically in a simplified manner, using both quantitative data and qualitative expert judgments. These participatory methods serve to integrate diverse scientific and stakeholder knowledge and to support the generation of actually implementable management strategies for sustainable development. For the purpose of integrating ecosystem services in land and water management in the Tarim River Basin through trans- disciplinary research, collaboration among scientists and institutional stakeholders from different sectors including water, agriculture, forestry, and nature conservation is required. The challenge is to adapt methods of transdisci- plinary research to socio-cultural conditions in China, particularly regarding ways of communication and deci- sion-making.展开更多
To select the location of sewage outlet in the sewage disposal program of Shanghai is a rather comprehensive problem which covers many fields and has great influences. The sewage outlet at Zuyuan, about 10 km away fro...To select the location of sewage outlet in the sewage disposal program of Shanghai is a rather comprehensive problem which covers many fields and has great influences. The sewage outlet at Zuyuan, about 10 km away from Wusongkou, is situated on the south bank of the South Channel in the Yangtze Estuary. In order to determine the water depth which can guaranteed the safe draining of sewage at the outlet, a statistical method is adopted in this paper for the determination of the guarantee rate of safe draining at Zuyuan sewage outlet by means of the characteristics of fluvial process and previous topographic data, and the guaranteed water depth for safe draining is then determined.展开更多
There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The ...There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The color infrared aerophotos, multi-spectral photography and thermal infrared scanning had been specially done besides MSS image, processing. Researches on remote sensing applications to engineering geology, hydrogeology, deformation of neo-tectonics, Iandslide, mud-rock flow, ecological environment and geographical information system had been carried out by more than 20 research units.展开更多
There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relat...There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.展开更多
文摘On the occasion of the 80th anniversary of Nanjing Hydraulic Research Institute (NHRI) in 2015, NHRI would like to express its cordial gratitude and high respect to leaders at all levels, domestic and overseas alumni and people from all walks of life who have shown concem for and provided support to the construction and development of NHRI over the long term.
文摘On the occasion of the 80^th anniversary of Nanjing Hydraulic Research Institute(NHRI)in 2015,NHRI would like to express its cordial gratitude and high respect to leaders at all levels,domestic and overseas alumni and people from all walks of life who have shown concern for and provided support to the construction and development of NHRI over the long term.
基金funded by the German Federal Ministry of Education and Research(BMBF)
文摘There is a growing need for both science and practice domains to collaboratively and systematically seek knowledge-based strategies for sustainable development. In recent years, transdisciplinary research has emerged as a new approach that enables joint problem solving among scientists and stakeholders in various fields. In this paper, we aim to introduce transdisciplinary research for supporting the integration of the concept of eco- system services into land and water management in the Tarim River Basin, Xinjiang, Northwest China. While a large number of ecosystem service studies have helped to raise the awareness for the value of nature in China, a number of challenges remain, including an improved understanding of the relationships between ecosystem structure, functions and services, and the interaction of the various ecosystem services. A meaningful valuation of ecosystem services also requires the consideration of their strong spatial heterogeneity. In addition, ways to introduce the con- cept of ecosystem services into decision-making in China need to be explored. Thus, successful integration of the concept of ecosystem services into actual land and water management requires a broad knowledge base that only a number of scientific disciplines and stakeholders can provide jointly, via a transdisciplinary research process. We regard transdisciplinary research as a recursive process to support adaptive management that includes joint knowledge generation and integration among scientists and stakeholders. System, target, and transformation knowledge are generated and integrated during the process of (1) problem (re)definition, (2) problem analysis and strategy development, and (3) evaluation of the impact of the derived strategy. Methods to support transdisciplinary research comprise participatory modelling (actor-based modelling and Bayesian Networks modelling) and partici- patory scenario development. Actor-based modelling is a semi-quantitative method that is based on the analysis of problem perspectives of individual stakeholders as depicted in perception graphs. With Bayesian Networks, com- plex problem fields are modelled probabilistically in a simplified manner, using both quantitative data and qualitative expert judgments. These participatory methods serve to integrate diverse scientific and stakeholder knowledge and to support the generation of actually implementable management strategies for sustainable development. For the purpose of integrating ecosystem services in land and water management in the Tarim River Basin through trans- disciplinary research, collaboration among scientists and institutional stakeholders from different sectors including water, agriculture, forestry, and nature conservation is required. The challenge is to adapt methods of transdisci- plinary research to socio-cultural conditions in China, particularly regarding ways of communication and deci- sion-making.
文摘To select the location of sewage outlet in the sewage disposal program of Shanghai is a rather comprehensive problem which covers many fields and has great influences. The sewage outlet at Zuyuan, about 10 km away from Wusongkou, is situated on the south bank of the South Channel in the Yangtze Estuary. In order to determine the water depth which can guaranteed the safe draining of sewage at the outlet, a statistical method is adopted in this paper for the determination of the guarantee rate of safe draining at Zuyuan sewage outlet by means of the characteristics of fluvial process and previous topographic data, and the guaranteed water depth for safe draining is then determined.
文摘There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The color infrared aerophotos, multi-spectral photography and thermal infrared scanning had been specially done besides MSS image, processing. Researches on remote sensing applications to engineering geology, hydrogeology, deformation of neo-tectonics, Iandslide, mud-rock flow, ecological environment and geographical information system had been carried out by more than 20 research units.
文摘There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.