期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Assessment of Super Absorbent Polymer (SAP) on Plant Available Water (PAW) in Dry Lands
1
作者 Vincent Ng’eno Christian Omuto +1 位作者 Duncan Mbuge Vitalis Too 《Engineering(科研)》 CAS 2023年第2期90-105,共16页
One of the ways of overcoming the cost of irrigation is through in-situ water harvesting at the plant roots. Super absorbent polymer (SAP) can facilitate water harvesting at the plant roots. This study attempted to as... One of the ways of overcoming the cost of irrigation is through in-situ water harvesting at the plant roots. Super absorbent polymer (SAP) can facilitate water harvesting at the plant roots. This study attempted to assess the effect of SAP on plant available water (PAW) of different soils. In this study, SAP was sequentially added at the rate of 0.2%, 0.3% and 0.5% of the soil weight and its impact assessed in clay, sandy clay and sandy loam soils. The moisture retention characteristics of the original and SAP treated soils were studied using soil water retention curves (SWRC) and results modelled using Gardner model. PAW was estimated from SWRC as the difference between moisture content at 1.5 and 3 bar in all soils. The difference in PAW between original and treated soils was assessed at 5% level of significance. The WRC of all the samples was adequately found to be described by the Gardner model (Coefficient of determination R<sup>2</sup> ≥ 98% and residual standard error (RSE) ≤ 0.04). SWRC changed with increase in SAP percentage in clay, sandy clay and sandy loam soils. Clay had a higher change in water retention then sandy clay and lastly sandy loam. Plant available water content (PAW) in all soils increased. In clay soil it increased with increase in SAP from 0.3291 at zero SAP to 0.6223 at 0.5% SAP. Sandy clay soil increased in PAW from 0.2721 at zero SAP to 0.5335 at 0.5% SAP and Sandy loam soils from 0.1691 at zero SAP to 0.3461 at 0.5% SAP. Hence, from the study SAP can be used to conserve irrigation water in the plant roots and therefore reducing the cost since PAW has been increased. 展开更多
关键词 Plant Available water (PAW) Soil water Retention Curve (SWRC) SOIL Super Absorbent Polymer (SAP)
下载PDF
A thermodynamics-based three-scale constitutive model for partially saturated granular materials
2
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material GEOMATERIALS Multi-scale constitutive model water retention curve PLASTICITY
下载PDF
Feasibility of compacted attapulgite/diatomite amended clayey soils as gas barrier materials
3
作者 Heng Zhuang Wei-Yi Xia +5 位作者 Jia-Ming Wen Min Wang Ying-Zhen Li Ning-Jun Jiang Konstantin S.Rodygin Yan-Jun Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3707-3717,共11页
Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated s... Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated sites.This study aimed to investigate the gas diffusion barrier performance of compacted clayey soils amended with three agents including attapulgite and diatomite individually,and attapulgite/diatomite mixture.The properties including water retention,volumetric shrinkage,gas diffusion,and unconfined compressive strength were evaluated through a series of laboratory tests of amended compacted clayey soils.The results demonstrate that the decrease in volume proportions of interaggregate pores leads to an increase in unconfined compressive strength(qu).Both hydrophilic groups and microstructures of attapulgite and diatomite result in an increase in water retention percent(Wt)of compacted clayey soil specimens after amendment regardless of the type of agent or initial water content(w0).Furthermore,the ratio of the gas diffusion coefficient(De)to the gas diffusion coefficient in the air(Da)was significantly reduced owing to a decrease in volume proportions of inter-aggregate pores,hydrophilic group,and microstructures of attapulgite and diatomite.Scanning electron microscope analyses revealed that rod-shaped attapulgite filled the inter-aggregate pores formed by clay particles,whereas the disc-shaped diatomite particles,characterized by micropores,failed to obstruct the interaggregate pores due to their larger particle size.Mercury intrusion porosimetry(MIP)analyses showed a reduction in pore volume in the inter-aggregate pores,leading to a reduction in the total pore volume for both the attapulgite and attapulgite/diatomite mixture amended clays,which is in accordance with the scanning electron microscope(SEM)results.The findings are pertinent to the practical application of compacted clay liners as gas barriers against the upward migration of volatile or semi-volatile organic contaminants at contaminated sites. 展开更多
关键词 Compacted clay liner Attapulgite/diatomite mixture Diffusion barrier water retention
下载PDF
Unraveling the hydraulic properties of loess for landslide prediction:A study on variations in loess landslides in Lanzhou,Dingxi,and Tianshui,China
4
作者 Gao-chao Lin Wei Liu Xing Su 《China Geology》 CAS CSCD 2024年第2期291-302,共12页
Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci... Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters. 展开更多
关键词 LOESS LANDSLIDE Hydraulic properties water retention capacity and permeability Soil water Characteristic Curve(SWCC) Hydraulic conductivity Van Genuchten model Hydrogeological engineering Geological hazards prevention engineering
下载PDF
Modeling Soil Water Retention Curve with a Fractal Method 被引量:41
5
作者 HUANG Guan-Hua ZHANG Ren-Duo HUANG Quan-Zhong 《Pedosphere》 SCIE CAS CSCD 2006年第2期137-146,共10页
Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scali... Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scaling behavior of soil; relationships were established among the fractal dimension of SWRC, the fractal dimension of soil mass, and soil texture; and the model was used to estimate SWRC with the estimated results being compared to experimental data for verification. The derived fractal model was in a power-law form, similar to the Brooks-Corey and Campbell empirical functions. Experimental data of particle size distribution (PSD), texture, and soil water retention for 10 soils collected at different places in China were used to estimate the fractal dimension of SWRC and the mass fractal dimension. The fractal dimension of SWRC and the mass fractal dimension were linearly related. Also, both of the fractal dimensions were dependent on soil texture, i.e., clay and sand contents. Expressions were proposed to quantify the relationships. Based on the relationships, four methods were used to determine the fractal dimension of SWRC and the model was applied to estimate soil water content at a wide range of tension values. The estimated results compared well with the measured data having relative errors less than 10% for over 60% of the measurements. Thus, this model, estimating the fractal dimension using soil textural data, offered an alternative for predicting SWRC. 展开更多
关键词 fractal dimension soil texture soil water retention curve
下载PDF
Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment 被引量:26
6
作者 Chao WANG ChuanYan ZHAO +2 位作者 ZhongLin XU Yang WANG HuanHua PENG 《Journal of Arid Land》 SCIE CSCD 2013年第2期207-219,共13页
The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. T... The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth. 展开更多
关键词 VEGETATION soil water storage soil properties soil water retention curve forest catchment Heihe River
下载PDF
Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite 被引量:13
7
作者 叶为民 万敏 +3 位作者 陈宝 陈永贵 崔玉军 王驹 《Journal of Central South University》 SCIE EI CAS 2009年第5期821-826,共6页
Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively... Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant. 展开更多
关键词 Gaomiaoz BENTONITE soil-water characteristic hysteretic behavior nuclear waste repository water retention capacity TEMPERATURE
下载PDF
Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data 被引量:19
8
作者 B. GHANBARIAN-ALAVIJEH A. LIAGHAT +1 位作者 HUANG Guan-Hua M. Th. VAN GENUCHTEN 《Pedosphere》 SCIE CAS CSCD 2010年第4期456-465,共10页
The van Genuchten (vG) function is often used to describe the soil water retention curve (SWRC) of unsaturated soils and fractured rock. The objective of this study was to develop a method to determine the vG model pa... The van Genuchten (vG) function is often used to describe the soil water retention curve (SWRC) of unsaturated soils and fractured rock. The objective of this study was to develop a method to determine the vG model parameter m from the fractal dimension. We compared two approaches previously proposed by van Genuchten and Lenhard et al. for estimating m from the pore size distribution index of the Brooks and Corey (BC) model. In both approaches we used a relationship between the pore size distribution index of the BC model and the fractal dimension of the SWRC. A dataset containing 75 samples from the UNSODA unsaturated soil hydraulic database was used to evaluate the two approaches. The statistical parameters showed that the approach by Lenhard et al. provided better estimates of the parameter m. Another dataset containing 72 samples from the literature was used to validate Lenhard's approach in which the SWRC fractal dimension was estimated from the clay content. The estimated SWRC of the second dataset was compared with those obtained with the Rosetta model using sand, silt, and clay contents. Root mean square error values of the proposed fractal approach and Rosetta were 0.081 and 0.136, respectively, indicating that the proposed fractal approach performed better than the Rosetta model. 展开更多
关键词 fractal dimension soil water retention curve van Genuchten parameterization
下载PDF
Applicability of Fractal Models in Estimating Soil Water Retention Characteristics from Particle-Size Distribution Data 被引量:8
9
作者 LIU JIANLI and XU SHAOHUIInstitute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第4期301-308,共8页
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic... Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads. 展开更多
关键词 fractal model particle-size distribution soil water retention characteristics
下载PDF
Function of Soils in Regulating Rainwater in Southern China: Impacts of Land Uses and Soils 被引量:4
10
作者 YU Dong-Sheng SHI Xue-Zheng +2 位作者 WANG Hong-Jie ZHANG Xiang-Yan D. C. WEINDORF 《Pedosphere》 SCIE CAS CSCD 2008年第6期717-730,共14页
One of the most important functions of soils is to regulate rainwater and mitigate flooding and associated damages; this function can be estimated by the rainwater regulation ratio (η), i.e., percent of regulated r... One of the most important functions of soils is to regulate rainwater and mitigate flooding and associated damages; this function can be estimated by the rainwater regulation ratio (η), i.e., percent of regulated rainwater. Fifteen experimental plots were set up on the hills in Yingtan of Jiangxi Province, southern China. These plots were under three land use patterns, cultivated cropland, noncultivated land, and orchard interplanted with cash crops. With aid of an artificial rainfall simulator and Guelph method, rainfall, runoff, soil infiltration, and so on were measured in situ. Results showed that the orchard interplanted with cash crops was more effective in regulating rainwater than the other two land use patterns. When the maximum infiltration intensity was three times higher than the observed mean,η was higher than 70% for all plots. 77 was related to land use, slope gradient, and soil properties such as soil infiltration, organic carbon, bulk density, and texture. There is still more room to improve capacity of rainwater drainage (underground percolation) than that of rainwater storage in soils. Therefore, enhancing soil permeability is vital to improve the rainwater regulation efficiency in soils. 展开更多
关键词 land use rainwater partition soil water retention southern China
下载PDF
Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin,Northwest China 被引量:3
11
作者 Sven GRASHEY-JANSEN Martin KUBA +2 位作者 Bernd CYFFKA müt HALIK Tayierjiang AISHAN 《Chinese Geographical Science》 SCIE CSCD 2014年第6期647-657,共11页
The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human i... The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention 展开更多
关键词 soil moisture soil texture soil water tensions Tarim River water retention
下载PDF
Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China 被引量:3
12
作者 SUN Dingzhao LIANG Youjia PENG Shouzhang 《Journal of Arid Land》 SCIE CSCD 2022年第4期390-410,共21页
Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore,integrated interdiscipl... Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore,integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change(LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period(2000–2015) and in the future(2020–2050). An improved Markov-Cellular Automata(Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios(historical scenario(HS), ecological protection scenario(EPS), and urban expansion scenario(UES)) and two climate change scenarios(RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period(2000–2015) and in the future(2020–2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×10^(3) km^(2)/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×10^(6) mm and water retention increased by 0.09×10^(6) mm in the historical period(2000–2015),especially in the Interior drainage zone and its surrounding areas. In the future(2020–2050), the pixel means of water yield is higher under RCP4.5 scenario(96.63 mm) than under RCP8.5 scenario(95.46mm), and the pixel means of water retention is higher under RCP4.5 scenario(1.95 mm) than under RCP8.5 scenario(1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×10^(6) mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios. 展开更多
关键词 water retention water yield land use/cover change climate change representative concentration pathway Markov-Cellular Automata model Loess Plateau
下载PDF
Water-retaining properties of NCZ composite dust suppressant and its wetting ability to hydrophobic coal dust 被引量:2
13
作者 Jianguo Liu Shu Wang +3 位作者 Longzhe Jin Tianyang Wang Zihao Zhou Jingge Xu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第2期240-247,共8页
Coal dust is a primary threat to underground coal miners.The most common approach to control coal dust is hydraulic methods,such as water spray and coal seam water injection.To improve the dust suppressant efficiency ... Coal dust is a primary threat to underground coal miners.The most common approach to control coal dust is hydraulic methods,such as water spray and coal seam water injection.To improve the dust suppressant efficiency of hydraulic methods,a novel chemical composite dust suppressant,called NCZ,was prepared in this study using calcium chloride(CaCl_(2)),magnesium chloride(MgCl_(2)),and nonionic surfactants using a thermal synthesis method.The water-retaining properties of NCZ powder and its solutions were characterized using the water absorption rate(WAR)and evaporation rate(ER),respectively,and the wetting abilities of the NCZ solutions on coal dust were tested using the initial contact angle(ICA)and sink rate(SR).The results indicate that the NCZ solutions have anti-evaporation effects,and the ER of the solution with a 20.0 wt%NCZ is reduced by 11.7%compared with that of clean water.Furthermore,NCZ solutions have remarkable enhancement effects on the wettability of coal dust.The ICA and SR of clean water and the NCZ solution at 20.0 wt%are 141.9°and 0 mg/s,and 29.3°and 1.46 mg/s,respectively.Finally,quantitative relationships between the solution surface tension and the ICA and IR were established using the least squares method.This study provides a new product for dust suppression in underground mines,which is significant for the optimum applied con-centration of dust suppressant in mining operations. 展开更多
关键词 Coal dust HYDROPHOBICITY Dust suppressant WETTABILITY water retention
下载PDF
Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar 被引量:2
14
作者 Ankit Garg He Huang +6 位作者 Weiling Cai Narala Gangadhara Reddy Peinan Chen Yifan Han Viroon Kamchoom Shubham Gaurav Hong-Hu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期593-602,共10页
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such ... Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such density variations are observed in agriculture(loosely compacted)and engineering(densely compacted)applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with different densities.The major objective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS)with different biochar contents under varying degree of compaction(DOC)conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5%and 10%).All BAS samples were compacted at three DOCs(65%,80%and 95%)in polyvinyl chloride(PVC)tubes.Each soil column was subjected to dryingewetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability kg as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%)>k_(g,80%)>k_(g,95%))at a relatively low suction range(<200 kPa)because both biochar and compaction treatment reduce the connected pores. 展开更多
关键词 BIOCHAR Degree of compaction(DOC) Gas permeability Soil water retention Wettingedrying cycle
下载PDF
Preparation and Water Retention Properties of Clay-based Sand-fixing and Grass-planting Materials 被引量:2
15
作者 张增志 WANG Botao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期325-328,共4页
Targeting the problem of available water conservation in sand fixation, the sand-fixing and grass-planting materials were prepared with clay modified by emulsifying vegetable waxes and octylphenol polyoxyethylene eth... Targeting the problem of available water conservation in sand fixation, the sand-fixing and grass-planting materials were prepared with clay modified by emulsifying vegetable waxes and octylphenol polyoxyethylene ether (OP4). The water retention property was studied in simulating desertification environmental climate and the materials were characterized by means of UV-Vis, SEM, FTIR, XRD and TGA measurements. The experimental result showed that the materials had excellent water retention properties, due to that vegetable waxes adhered evenly to clay particle surfaces, made the clay pores changing from hydrophilic to hydrophobic and so inhibited the water evaporation. Grass-planting experiment showed that, with reasonable mass ratio of clay, vegetable waxes and surfactant, the materials not only inhibited water evaporation but also maintained sound air permeability so shat the germination rate and survival rate of grass were significantly improved. 展开更多
关键词 octylphenol polyoxyethylene ether (OP4) vegetable waxes sand-fixing and grass-planting water retention
下载PDF
Microstructural insight into permeability and water retention property of compacted binary silty clay 被引量:1
16
作者 GAO Qian-feng SHI Zhen-ning +1 位作者 LUO Jin-tao LIU Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2068-2081,共14页
The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted bi... The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted binary silty clay. Specimens with different mixing ratios and dry densities were prepared. Scanning electron microscopy and mercury intrusion porosimetry were used to characterise the microstructure of silty clay. Thereafter, falling-head permeability tests and water retention tests were conducted to study the permeability and water retention property, respectively. The results demonstrate that clay particles are dispersed and show preferred arrangements after compaction when the clay content is 100%. As the clay content decreases, the arrangement of clay particles is gradually disturbed because of the existence of silt particles, causing the formation of large pores around silt particles. When the dry density increases, the pores around silt particles significantly decrease. Moreover, the permeability of silty clay decreases but the water retention capacity increases with increasing clay content and dry density. This is because the silty clay with larger clay content and dry density has fewer large pores, which greatly restrains the flow of water. Both the permeability and water retention property of silty clay can be predicted from pore size distribution parameters. 展开更多
关键词 silty clay MICROSTRUCTURE PERMEABILITY water retention property scanning electron microscopy
下载PDF
Stability control of water-enriched roofs of coal drifts 被引量:1
17
作者 LI Xue-hua YAO Qiang-ling +2 位作者 DING Xiao-lei WANG Yi-pin ZHANG Lei 《Mining Science and Technology》 EI CAS 2009年第4期467-472,共6页
Excavation-and-support induced disturbances are likely to make water-enriched roofs to become weathered and fractured.The development and connection of cracks provide new water channels which may result in water loss,... Excavation-and-support induced disturbances are likely to make water-enriched roofs to become weathered and fractured.The development and connection of cracks provide new water channels which may result in water loss,seriously affecting the in-tegrity and stability of roofs,leading to incidents of roof fall.Control of water-enriched rocks surrounding coal drifts is quite diffi-cult in China.Based on the practical situation of a water-enriched roof of a coal drift in working face 112201 of the Meihuajing coal mine,we studied the deformation features of surrounding rocks and the development of fractured areas and analyzed the major reasons for the decrease in load-carrying capacity,indicating that the key to maintain roof stability of this kind of coal drift is water retention.In addition,we proposed a staged control technology consisting of:1) surface grouting;2) cable anchor strengthening and 3) roof grouting,which has proven to be successful in this practical application.Our study indicates that,after the problem of water loss from the water-enriched roof had been effectively solved,a combined support system with high performance bolts can maintain the stability of the bearing structure,resulting in the control of roof stability in this kind of coal drift. 展开更多
关键词 AQUIFER roof stability water retention staged control
下载PDF
Water Retention Curve and Particle Breakage of Aggregates Recycled from Demolition Waste 被引量:1
18
作者 Alejandra Maria Gomez Jimenez Maircio Muniz de Farias +1 位作者 Manoel Porfirio Cordao Neto Ivan Fernando Otalvaro Calle 《Journal of Civil Engineering and Architecture》 2014年第9期1194-1203,共10页
CDW (construction and demolition wastes) present a high amount of aggregate chips covered with mortar. This results in high absorption of water with a direct impact in particle breakage or disaggregation. It is supp... CDW (construction and demolition wastes) present a high amount of aggregate chips covered with mortar. This results in high absorption of water with a direct impact in particle breakage or disaggregation. It is supposed that intra particle suction plays an important role in this phenomenon. However, WRCs (water retention curves) of CDW are not well understood. In this work, the WRCs of dynamically compacted specimens of aggregates recycled from the demolition of the National Stadium in Brasilia are studied. The objective of this study is to obtain WRCs of the recycled materials by using the pressure plate and filter paper methods. The breaking effect during compaction is quantified from the grain size distribution curves. The particle breakage during compaction increases when the energy is augmented. The results from the WRCs were incorporated into a pore size capillary model to predict pore size distribution. 展开更多
关键词 Construction and demolition wastes water retention curve particle breakage.
下载PDF
Preparation and Water Retention Properties of Montmorillonite Modified by EL-10 Emulsifying Agent 被引量:1
19
作者 渠永平 zhang zengzhi li cuilan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期806-811,共6页
Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)... Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)(EL-10) emulsifying vegetable waxes. The water retention property was studied in simulated desertification climate, and the materials were analyzed and characterized by UV-Vis, SEM, FTIR and XRD measurements. Moreover, a UV carbon arc lamp was used to test the resistance to aging. The experimental results show that the emulsion has good dispersity. Both the water retention property and the aging resistance performance of the modified clay were excellent. The lamellar structure and chemical composition of MMT had no obvious changes before and after modification. The surfaces of clay particles were coated uniformly with modified MMT, so the loose clay particles were cemented together by vegetable waxes. Meanwhile, the original big hydrophilic pores between the clay particles turned into capillary hydrophobic pores. So the clay particles formed a bonding layer which could inhibit water evaporation. Grass-planting experiment showed that reasonable mass ratio of vegetable waxes and EL-10 was 1:18. The materials not only had great water retention property but also maintained sound air permeability so that the germination rate of grass seed significantly increased from 8% to 52%. 展开更多
关键词 castor oil polyoxyethylene ether(10)(EL-10) vegetable waxes montmorillonite modification water retention properties
下载PDF
Determination of strain-dependent soil water retention characteristics from gradation curve
20
作者 Min Wang GNPande +1 位作者 Stan Pietruszczak Z.X.Zeng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1356-1360,共5页
The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent s... The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent soil water retention curve(SWRC)is likely to be extraordinarily difficult.The first two authors have recently shown that SWRC can be computed from the gradation curve and the calculation result is consistent with the experimental results obtained from pressure plate tests.In this paper,based on a hypothesis related to change in the pore size distribution(POSD)due to volumetric strain of soil skeleton,a method to compute strain-dependent SWRC is presented.It is found that at initial degrees of saturation higher than 0.8,the influence of volumetric strain may be marginal whilst at initial degrees of saturation lower than 0.8,its influence is likely to be substantial.In all cases,the gradation curve of the soil affects the SWRC. 展开更多
关键词 Soil water retention curve(SWRC) Gradation curve Pore size distribution(POSD) Unsaturated soil
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部