期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Qualitative analysis and quantitative simulation on Yin-Huang water salinization mechanism in Bei-Da-Gang Reservoir 被引量:1
1
作者 ZHAO Wen-yu WANG Qi-shan +2 位作者 WU Li-bo ZHANG Bin WANG Xiao-qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期853-856,共4页
Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River( i. e., Yin... Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River( i. e., Yin-Huang water) becomes saltier and saltier when being stored in the Bei-Da-Gang reservoir. We qualitatively analyze the water salinization mechanism based on mass transfer theory. The main factors are salinity transfer of saline soil, evaporation concentrating, and the agitation of wind. A simulative experimental pond and an evaporation pond were built beside the Bei-Da-Gang reservoir to quantitatively investigate the water salinization based on water and solute balance in the simulative pond. 80% of increased [Cl^-] is due to the salinity transfer of the saline soil and the other 20% is due to evaporation concentrating, so the former is the most important factor. We found that the salinization of Yin-Huang water can be described with a zero-dimension linear model. 展开更多
关键词 Yin-Huang-Ji-Jin Project water salinization simulative experiment saline soil evaporation concentrating mass transfermathematical model
下载PDF
Boosting overall saline water splitting by constructing a strain-engineered high-entropy electrocatalyst
2
作者 Ateer Bao Yaohang Gu +6 位作者 Yuxuan Zhang Bowen Zhang Juncheng Wu Bo Ni Xiaoyan Zhang Haijun Pan Xiwei Qi 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期154-166,共13页
High-entropy materials(HEMs),which are newly manufactured compounds that contain five or more metal cations,can be a platform with desired properties,including improved electrocatalytic performance owing to the inhere... High-entropy materials(HEMs),which are newly manufactured compounds that contain five or more metal cations,can be a platform with desired properties,including improved electrocatalytic performance owing to the inherent complexity.Here,a strain engineering methodology is proposed to design transition-metal-based HEM by Li manipulation(LiTM)with tunable lattice strain,thus tailoring the electronic structure and boosting electrocatalytic performance.As confirmed by the experiments and calculation results,tensile strain in the LiTM after Li manipulation can optimize the d-band center and increase the electrical conductivity.Accordingly,the asprepared LiTM-25 demonstrates optimized oxygen evolution reaction and hydrogen evolution reaction activity in alkaline saline water,requiring ultralow overpotentials of 265 and 42 mV at 10 mA cm−2,respectively.More strikingly,LiTM-25 retains 94.6%activity after 80 h of a durability test when assembled as an anion-exchange membrane water electrolyzer.Finally,in order to show the general efficacy of strain engineering,we incorporate Li into electrocatalysts with higher entropies as well. 展开更多
关键词 d-band center electrical conductivity high-entropy electrocatalyst lattice-strain engineering saline/alkaline water splitting
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
3
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline water Soil Acidity Soil Alkalinity
下载PDF
Freshening of the Intermediate Waters in the Northern South China Sea over the Past Six Decades
4
作者 陈栩洋 王东晓 +2 位作者 舒业强 成里京 范双双 《Journal of Tropical Meteorology》 SCIE 2024年第1期42-50,共9页
The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the... The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the long-term changes in the intermediate water in the SCS have not been thoroughly studied due to limited data,particularly in relation to its thermodynamic variations.This study utilized reanalysis data products to identify a 60-year trend of freshening in the intermediate waters of the northern South China Sea(NSCS),accompanied by an expansion of low-salinity water.The study also constructed salinity budget terms,including advection and entrainment processes,and conducted an analysis of the salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of the intermediate water in the NSCS.The analysis revealed that the freshening in the northwest Pacific Ocean and the intensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes in the NSCS.Additionally,a weakened trend in the intensity of vertical entrainment also contributes to the freshening in the NSCS.This study offers new insights into the understanding of regional deep sea changes in response to variations in both thermodynamics and oceanic dynamic processes. 展开更多
关键词 freshening South China Sea salinity of the intermediate water salinity budget analysis Luzon Strait transport
下载PDF
Types of Irrigation Water and Soil Amendment Affect the Growth and Flowering of Petunia x alkinsiana ‘Bravo Pinc’
5
作者 Abdullah M.Algahtani Fahed A.Al-Mana Khalid M.Elhindi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第2期487-499,共13页
Water insufficiency is the hampering feature of crop sustainability,especially in arid and semi-arid regions.So,the effectual usage of all water resources especially underground brackish water represents the core prio... Water insufficiency is the hampering feature of crop sustainability,especially in arid and semi-arid regions.So,the effectual usage of all water resources especially underground brackish water represents the core priority in Saudi Arabia.The present study aimed to recognize the influence of different types of water irrigation(tap water as a control,salinized well water,and magnetized salinized well water)with or without soil amendments(soil without any amendment as a control,peat-moss,ferrous sulfate,and peat-moss plus ferrous sulfate)on petunia plant growth and flowering as well as ion content.Irrigating Petunia plants with saline well water adversely affected growth and flowering as compared to tap water and magnetized saline well water.Additionally,plants irrigated with magnetized water showed a significant enhancement in all the studied vegetative and flowering growth parameters as compared to those irrigated with salinized well water.Furthermore,mineral contents and survival of Petunia plants irrigated with magnetized well water were higher than those irrigated with tap water.Irrigation with magnetized well water significantly reduced levels of Na+and Cl−ions in leaves of Petunia plants indicating the role of magnetization in alleviating harmful effects of salinity.In conclusion,we recommend the utilization of magnetized saline well water for irrigating Petunia plants either alone or in combination with soil amendments(peat moss plus ferrous sulfate). 展开更多
关键词 FLOWERING MAGNETIZATION PETUNIA saline water soil amendment
下载PDF
Hybrid low salinity water and surfactant process for enhancing heavy oil recovery
6
作者 ROLDÁN-CARRILLO Teresa CASTORENA-CORTES Gladys +3 位作者 SALAZAR CASTILLO Rodrigo Orlando HERNÁNDEZ-ESCOBEDO Luis OLGUÍN-LORA Patricia GACHUZ-MURO Herón 《Petroleum Exploration and Development》 SCIE 2023年第6期1466-1477,共12页
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st... Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant. 展开更多
关键词 low salinity water flooding surfactant flooding hybrid processes enhanced oil recovery TOMOGRAPHY
下载PDF
Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation 被引量:14
7
作者 Wei MIN ZhenAn HOU +3 位作者 LiJuan MA Wen ZHANG SiBo RU Jun YE 《Journal of Arid Land》 SCIE CSCD 2014年第4期454-467,共14页
In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the ... In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the effect of irrigation water salinity and nitrogen(N) application rate on soil salinity and cotton yield under drip irrigation during the 2011 and 2012 growing seasons. The experimental design was a 3×4 factorial with three irrigation water salinity levels(0.35, 4.61 and 8.04 dS/m) and four N application rates(0, 240, 360 and 480 kg N/hm2). Results showed that soil water content increased as the salinity of the irrigation water increased, but decreased as the N application rate increased. Soil salinity increased as the salinity of the irrigation water increased. Specifically, soil salinity measured in 1:5 soil:water extracts was 218% higher in the 4.61 dS/m treatment and 347% higher in the 8.04 dS/m treatment than in the 0.35 dS/m treatment. Nitrogen fertilizer application had relatively little effect on soil salinity, increasing salinity by only 3%–9% compared with the unfertilized treatment. Cotton biomass, cotton yield and evapotranspiration(ET) decreased significantly in both years as the salinity of irrigation water increased, and increased as the N application rate increased regardless of irrigation water salinity; however, the positive effects of N application were reduced when the salinity of the irrigation water was 8.04 dS/m. Water use efficiency(WUE) was significantly higher by 11% in the 0.35 dS/m treatment than in the 8.04 dS/m treatment. There was no significant difference in WUE between the 0.35 dS/m treatment and the 4.61 dS/m treatment. The WUE was also significantly affected by the N application rate. The WUE was highest in the 480 kg N/hm2 treatment, being 31% higher than that in the 0 kg N/hm2 treatment and 12% higher than that in the 240 kg N/hm2 treatment. There was no significant difference between the 360 and 480 kg N/hm2 treatments. The N use efficiency(NUE) was significantly lower in the 8.04 dS/m treatment than in either the 4.61 dS/m or the 0.35 dS/m treatment. There was no significant difference in NUE between the latter two treatments. These results suggest that irrigation water with salinity 〈4.61 dS/m does not have an obvious negative effect on cotton production, WUE or NUE under the experimental conditions. Application of N fertilizer(0–360 kg N/hm2) could alleviate salt damage, promote cotton growth, and increase both cotton yield and water use efficiency. 展开更多
关键词 saline water NITROGEN soil salinity COTTON water use efficiency nitrogen use efficiency
下载PDF
Saline Water Irrigation Scheduling Through a Crop-Water-Salinity Production Function and a Soil-Water-Salinity Dynamic Model 被引量:16
8
作者 WANG Yang-Ren KANG Shao-Zhong +2 位作者 LI Fu-Sheng ZHANG Lu ZHANG Jian-Hua 《Pedosphere》 SCIE CAS CSCD 2007年第3期303-317,共15页
Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to o... Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water. 展开更多
关键词 crop-water-salinity production function irrigation scheduling saline water irrigation water-salinity dy- namic model
下载PDF
Effects of deficit irrigation with saline water on spring wheat growth and yield in arid Northwest China 被引量:11
9
作者 Jing JIANG ZaiLin HUO +3 位作者 ShaoYuan FENG ShaoZhong KANG FenXing WANG ChaoBo ZHANG 《Journal of Arid Land》 SCIE CSCD 2013年第2期143-154,共12页
Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three sali... Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three salinity levels sl, s2 and s3 (0.65, 3.2, and 6.1 dS/m) in combination with three water levels wl, w2 and w3 (375, 300, and 225 mm). In 2008, for most treatments, deficit irrigation showed adverse effects on wheat growth; meanwhile, the effect of saline irrigation was not apparent. In 2009, growth parameters of wl treatments were not always optimal under saline irrigation. At 3.2 and 6.1 dS/m in 2008, the highest yield was obtained by wl treatments, however, in 2009, the weight of 1,000 grains and wheat yield both followed the order w2 〉 wl 〉 w3. In this study, spring wheat was sensitive to water deficit, especially at the booting to grain-filling stages, but was not significantly affected by saline irrigation and the combination of the two factors. The results demonstrated that 300-mm irrigation water with a salinity of less than 3.2 dS/m is suitable for wheat fields in the study area. 展开更多
关键词 saline water irrigation leaf area index (LAI) leaf potential yield components
下载PDF
Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water 被引量:5
10
作者 Mohammad Reza Zaeri Rohallah Hashemi +1 位作者 Hamidreza Shahverdi Mehdi Sadeghi 《Petroleum Science》 SCIE CAS CSCD 2018年第3期564-576,共13页
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the ef... An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments. 展开更多
关键词 Enhanced oil recovery Spontaneous imbibition Low salinity water Wettability alteration Carbonate rocks
下载PDF
Irrigation water salinity and N fertilization:Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field 被引量:5
11
作者 MIN Wei GUO Hui-juan +4 位作者 ZHANG Wen ZHOU Guang-wei MA Li-juan YE Jun HOU Zhen-an 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1121-1131,共11页
Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation... Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitrification and denitrification. A 3×2 factorial design was used with three levels of irrigation water salinity(0.35, 4.61 and 8.04 d S m-1) and two N rates(0 and 360 kg N ha^(-1)). The results indicated that irrigation water salinity and N fertilization had significant effects on many soil physicochemical properties including water content, salinity, p H, NH_4-N concentration, and NO_3-N concentration. The abundance(i.e., gene copy number) of ammonia-oxidizing archaea(AOA) was greater than that of ammonia-oxidizing bacteria(AOB) in all treatments. Irrigation water salinity had no significant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water(i.e., the 4.61 and 8.04 d S m-1 treatments) reduced AOA abundance, AOB abundance and potential nitrification rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water significantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could significantly reduce both the abundance of ammonia oxidizers and potential nitrification rates. The AOA may play a more important role than AOB in nitrification in desert soil. 展开更多
关键词 saline water nitrogen fertilizer ammonia-oxidizing microorganisms enzyme activity cotton yield
下载PDF
Soil water and salt distribution under furrow irrigation of saline water with plastic mulch on ridge 被引量:7
12
作者 LiJuan CHEN Qi FENG 《Journal of Arid Land》 SCIE CSCD 2013年第1期60-70,共11页
Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- por... Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- portation and its spatial distribution characteristics under irrigation with saline water in a maize field experiment. The mathematical relationships for soil salinity, irrigation amount and water salinity are also established to evaluate the contribution of the irrigation amount and the salinity of saline water to soil salt accumulation. The result showed that irrigation with water of high salinity could effectively increase soil water content, but the increment is limited com- paring with the influence from irrigation amount. The soil water content in furrows was higher than that in ridges at the same soil layers, with increments of 12.87% and 13.70% for MMF9 (the treatment with the highest water salinity and the largest amount of irrigation water) and MMF1 (the treatment with the lowest water salinity and the least amount of irrigation water) on 27 June, respectively. The increment for MMF9 was gradually reduced while that for MMF1 increased along with growth stages, the values for 17 August being 2.40% and 19.92%, respectively. Soil water content in the ridge for MMF9 reduced gradually from the surface layer to deeper layers while the surface soil water content for MMF1 was smaller than the contents below 20 cm at the early growing stage. Soil salinities for the treatments with the same amount of irrigation water but different water salinity increased with the water salinity. When water salinity was 6.04 dS/m, the less water resulted in more salt accumulation in topsoil and less in deep layers. When water salinity was 2.89 dS/m, however, the less water resulted in less salt accumulation in topsoil and salinity remained basically stable in deep layers. The salt accumulation in the ridge surface was much smaller than that in the furrow bottom under this technology, which was quite different from traditional furrow irrigation. The soil salinities for MMF7, MMF8 and MMF9 in the ridge surface were 0.191, 0.355 and 0.427 dS/m, respectively, whereas those in the furrow bottom were 0.316, 0.521 and 0.631 dS/m, respectively. The result of correlation analysis indicated that compared with irrigation amount, the irrigation water salinity was still the main factor influ- encing soil salinity in furrow irrigation with plastic mulch on ridge. 展开更多
关键词 water and salt transportation furrow irrigation saline water soil salinity soil water content
下载PDF
Sustainable Irrigation with Brackish Groundwater in Heilonggang Region,China 被引量:4
13
作者 Jin Menggui Zhang Renquan Gao Yunfu Faculty of Environmental Science and Geotechnique, China University of Geosciences, Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1998年第1期92-96,共5页
Saline groundwater is widely distributed in Heilonggang region. While deep confined water is being mined, saline water has not been used in most part of the region. Extension of saline water irrigation is of signific... Saline groundwater is widely distributed in Heilonggang region. While deep confined water is being mined, saline water has not been used in most part of the region. Extension of saline water irrigation is of significance to resolve water shortage, slow down environmental degradation and support the sustainable development of the local agriculture. Four key points are proposed to be managed by comprehensive measures: (1) adapting salt resistant ability; (2) reducing salt input; (3) decreasing soil surface evaporation and salt accumulation in the root zone, and (4) washing away salt from the root zone. Experiments and farming practices demonstrated that brackish water with TDS (total dissolved solids) of 2-5 g/l can be used for crop irrigation. For example, winter wheat can be sustainably irrigated by brackish water with a water limitation of 120 mm every year. Irrigation in combination with different comprehensive measures can increase the efficiency of saline water irrigation. 展开更多
关键词 saline water sustainable irrigation Heilonggang.
下载PDF
Evaluation of boron isotopes in halite as an indicator of the salinity of Qarhan paleolake water in the eastern Qaidam Basin, western China 被引量:4
14
作者 Yongsheng Du Qishun Fan +8 位作者 Donglin Gao Haicheng Wei Fashou Shan Binkai Li Xiangru Zhang Qin Yuan Zhanjie Qin Qianhui Ren Xueming Teng 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期253-262,共10页
In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isoto... In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions. 展开更多
关键词 B isotope compositions Brine Chemical concentrations Qarhan salt lake Western China Salinity of paleolake water
下载PDF
Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert,China 被引量:7
15
作者 GONG Yanping WANG Xusheng +3 位作者 HU B Xiao ZHOU Yangxiao HAO Chunbo WAN Li 《Journal of Arid Land》 SCIE CSCD 2016年第5期694-706,共13页
Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed sa... Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD. 展开更多
关键词 arid region groundwater-fed lake spring water level change salinity
下载PDF
Numerical Simulation and Dynamical Analysis for Low Salinity Water Lens in the Expansion Area of the Changjiang Diluted Water 被引量:2
16
作者 张文静 朱首贤 +3 位作者 李训强 阮鲲 管卫兵 彭剑 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期777-790,共14页
The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather co... The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide. 展开更多
关键词 Changjiang diluted water low salinity water lens numerical simulation dynamic mechanism
下载PDF
Exploration on compound water circulation system to solve water resources problems of North China Plain 被引量:1
17
作者 LIU Ji-chao SHI Jian-sheng +1 位作者 GAO Ye-xin REN Zhan-bing 《Journal of Groundwater Science and Engineering》 2016年第3期229-237,共9页
In order to solve water resources problems in the North China Plain, this paper explored human-nature compound water circulation system from three aspects including urban flood control, surface drainage and saline wat... In order to solve water resources problems in the North China Plain, this paper explored human-nature compound water circulation system from three aspects including urban flood control, surface drainage and saline water in the central and eastern of the North China Plain. Results show that:(1) The technical methods have achieved zero increase in rainwater runoff in urban areas,(2) surface drainage depletion problems can be solved through abandoned water and river water separation method,(3) and technical method through promoting rainwater infiltration would be used to solve problem of saline water in the central and eastern parts. This research provides a new perspective to the ultimate solutions to water resources problems in the North China Plain, and a fresh research direction for the development of hydro-geological science. 展开更多
关键词 North China Plain Saline water RAINwater water circulation Compound system
下载PDF
Maximizing Irrigation Water Productivity by Optimizing Leaching Fraction 被引量:1
18
作者 Isam Mohammed Abdulhameed 《Journal of Agricultural Science and Technology(A)》 2017年第2期73-80,共8页
The importance of maximizing irrigation water productivity is increasing as the water resources still decreasing and deteriorating due to environmental interactions. An optimal irrigation water depth (including leach... The importance of maximizing irrigation water productivity is increasing as the water resources still decreasing and deteriorating due to environmental interactions. An optimal irrigation water depth (including leaching water depth) was estimated in order to maximize water unit volume productivity by using the optimal leaching fraction (LF), which is calculated by the new proposed model--unit yield ratio (UYR%) and irrigation depth ratio (IDP). A computer program was constructed to apply this model for several crops irrigated by two water resources--river and well. The water salinity of river was 1.1 dS/m and the well salinity was 3.85 dS/m. The results showed that there is an optimal leaching requirement (LR) value for each crop irrigated by any water resource. The maximum UYR% of the alfalfa irrigated by saline well water was 58.45% with the optimal LF = 0.4, while the maximum UYR% of the bean irrigated by river water was 78.58% with the optimal LR = 0.2. The optimal LF is saving water by increasing the productivity of irrigation water unit volume, especially when using saline irrigation water, for example, an increase of IDP for alfalfa by only 20%, followed by an increase of UYR% about 47.5% (from 12% to 57%) by increasing LF from 0.1 to 0.3. 展开更多
关键词 Leaching fraction crop productivity saline irrigation water.
下载PDF
Slope stability of an unsaturated embankment with and without natural pore water salinity subjected to rainfall infiltration
19
作者 SADEGHI Hamed KOLAHDOOZ Ali AHMADI Mohammad-Mehdi 《岩土力学》 EI CAS CSCD 北大核心 2022年第8期2136-2148,共13页
Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water pote... Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water potential being normally neglected in laboratory measurements and numerical analyses.However,ignorance of salinity may result in overestimation of stability,and the design may not be as conservative as thought.Therefore,this research aims to first experimentally examine the influence of pore water salinity on water retention curve and saturated permeability of natural dispersive loess under saline and desalinated conditions.Second,the measured parameters are used for stability analyses of a railway embankment in an area subjected to regional rainfall incident.Eventually,a numerical parametric study is carried out to explore the significance of different rainfall schemes,construction patterns,and anisotropic permeability on the factor of safety.Results reveal that desalinization suppresses the water retention capability,which in turn results in a tremendous declination of unsaturated hydraulic conductivity.Despite the natural saline embankment,rainfall can hardly infiltrate into the desalinated embankment due to the lower conductivity.Therefore,the factor of safety for natural saline conditions drops notably,while only marginal changes occur in the case of the desalinated embankment. 展开更多
关键词 slope stability water salinity osmotic potential dispersive loess rainfall patterns
下载PDF
Effects of Ionic Concentrations on Survival and Growth in Polyculture of Litopenaeus vannamei with Oreochromis niloticus in Low Salinity Water
20
作者 K. Limhang C. Limsuwan +1 位作者 N. Chuchird W. Taparhudee 《Journal of Agricultural Science and Technology(A)》 2011年第8期1217-1220,共4页
A study comparative of rearing of the Pacific white shrimp (Litopenaeus vannamei) with the Nile tilapia (Oreochromis niloticus) in three earthen ponds (5,600 m^2) with the salinity ranged from 0.5-1.2 ppt and th... A study comparative of rearing of the Pacific white shrimp (Litopenaeus vannamei) with the Nile tilapia (Oreochromis niloticus) in three earthen ponds (5,600 m^2) with the salinity ranged from 0.5-1.2 ppt and three treatment ponds with salinity of 2-4 ppt by adding brine water into the ponds. Postlarvae 12 (PL12) of L. vannamei were stocked at density of 9 PL/m^2 and after one week the Nile tilapia fingerlings were stocked at density of I fish/m^2. Only pelleted feed were given to the fish during the 196-day rearing period. Shrimps were partially harvested by sieve net at day 80 and 120, and five days later PLI2 were stocked at the rate of 3 PL/m^2. After final harvesting at day 196, the production, body weight and survival from the treatment group were significantly higher (P 〈 0.05) than those of the control group. While the fish production body weight and survival rate from both groups were not significant differences (P 〉 0.051). The ionic concentration of six major ions (CI, SO42, Ca^2+, Na^+, Mg^2+ and K^+), salinity and hardness in the treatment ponds were significantly higher than those of the control ponds (P 〈 0.05). Moreover, the ionic profiles of the treatment ponds were similar to seawater at the salinity of 2 ppt while only 1 ppt in the control ponds. Results from the study indicated that in order to achieve good growth and survival rate of L. vannamei, brine water should be added into grow-out ponds prior to stocking and during the rearing: period to obtain and maintain the salinity not less than 2 ppt. 展开更多
关键词 Litopenaeus vannamei Oreochromis niloticus POLYCULTURE ionic concentration low salinity water
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部