Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim...Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.展开更多
Four-hole submerged entry nozzles (SEN) with dif- ferent structures were researched using the water simula- tion test by particle image velocimetry (PIV) and DJSO0 hydraulic measurement system to get suitable SEN ...Four-hole submerged entry nozzles (SEN) with dif- ferent structures were researched using the water simula- tion test by particle image velocimetry (PIV) and DJSO0 hydraulic measurement system to get suitable SEN for high efficiency continuous casting. The influences of the exit area ratio (2: 1:2, 3:2: 3, 1: 1:1 and 1:2: 1), upper guide island angle θ (20°, 40°, 60° and 80°) , and lower guide island angle α (60°, 80°, 100° and 120°) on the vortex position in the mold and fluctuations were researched. The results show that the exit area ratio and the upper and low guide island angles have ob- vious influence on the flow field; the flow field in the mold is suitable at 1:2:1 of the exit area ratio, 80° of upper guide island angle, and 100° of lower guide island angle.展开更多
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金support provided by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)the Research Grants Council of Hong Kong(Project No:AoE/M-402/20.)+1 种基金the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050248)the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.
基金The National Natrual Science Foundation of China(Grant No.51372231)
文摘Four-hole submerged entry nozzles (SEN) with dif- ferent structures were researched using the water simula- tion test by particle image velocimetry (PIV) and DJSO0 hydraulic measurement system to get suitable SEN for high efficiency continuous casting. The influences of the exit area ratio (2: 1:2, 3:2: 3, 1: 1:1 and 1:2: 1), upper guide island angle θ (20°, 40°, 60° and 80°) , and lower guide island angle α (60°, 80°, 100° and 120°) on the vortex position in the mold and fluctuations were researched. The results show that the exit area ratio and the upper and low guide island angles have ob- vious influence on the flow field; the flow field in the mold is suitable at 1:2:1 of the exit area ratio, 80° of upper guide island angle, and 100° of lower guide island angle.