The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.