Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of ...Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.展开更多
The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase tran...The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.展开更多
In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical mod...In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical model of damping valve with the circle throttle slice is established. The time for the throttle slice deformation is studied by using the finite software, and the laws that how the structure parameters affect the deformation time are obtained. Combining the theory of water hammer, the water hammer initial and boundary condition of the damping valve is deduced, and the water hammer model of throttle slice is established. The analysis of simulation results indicates that the water hammer pressure amplitude and the amount of water hammer oscillation period can be reduced and the dependability of the valve can be enhanced by modifying the structure parameters and aperture width between slice and valve body.展开更多
Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance...Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.展开更多
Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were app...Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were applied to enhance temperature measurement reliability. Additionally, in temperature calculations, the discrepancy in reflectivity between active probe beam wavelength and self-emission wavelength has been taken into account to improve the data’s precision.Precompressed water’s temperature–pressure data are in very good agreement with our quantum molecular dynamics model,suggesting a superionic conductor of H2O in the icy planets’ deep interior. A sluggish slope gradually approaching Dulong–Petit limit at high temperature was found at a specific heat capacity. Also, high reflectivity and conductivity were observed at the same state. By analyzing the temperature–pressure diagram, reflectivity, conductivity and specific heat comprehensively at conditions simulating the interior of planets in this work, we found that as the pressure rises, a change in ionization appears; it is supposedly attributed to energetics of bond-breaking in the H2O as it transforms from a bonded molecular fluid to an ionic state. Such molecular dissociation in H2O is associated with the conducting transition because the dissociated hydrogen atoms contribute to electrical properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
基金National Natural Science Foundation of China (No. 51174147) Natural Science Foundation of Hubei Province (No. 2012FFA135)
文摘Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.
基金the National Natural Science Foundation of China(Grant No.11604271).
文摘The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
基金Sponsored by the Ministerial Level Advanced Research Foundation (623010202 4)
文摘In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical model of damping valve with the circle throttle slice is established. The time for the throttle slice deformation is studied by using the finite software, and the laws that how the structure parameters affect the deformation time are obtained. Combining the theory of water hammer, the water hammer initial and boundary condition of the damping valve is deduced, and the water hammer model of throttle slice is established. The analysis of simulation results indicates that the water hammer pressure amplitude and the amount of water hammer oscillation period can be reduced and the dependability of the valve can be enhanced by modifying the structure parameters and aperture width between slice and valve body.
基金Project supported by the National Natural Science Foundation of China(Grant No.51305204)
文摘Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403200)the Science Challenge Project(Grant No.TZ2016001)
文摘Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were applied to enhance temperature measurement reliability. Additionally, in temperature calculations, the discrepancy in reflectivity between active probe beam wavelength and self-emission wavelength has been taken into account to improve the data’s precision.Precompressed water’s temperature–pressure data are in very good agreement with our quantum molecular dynamics model,suggesting a superionic conductor of H2O in the icy planets’ deep interior. A sluggish slope gradually approaching Dulong–Petit limit at high temperature was found at a specific heat capacity. Also, high reflectivity and conductivity were observed at the same state. By analyzing the temperature–pressure diagram, reflectivity, conductivity and specific heat comprehensively at conditions simulating the interior of planets in this work, we found that as the pressure rises, a change in ionization appears; it is supposedly attributed to energetics of bond-breaking in the H2O as it transforms from a bonded molecular fluid to an ionic state. Such molecular dissociation in H2O is associated with the conducting transition because the dissociated hydrogen atoms contribute to electrical properties.