Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of ...Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.展开更多
Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance...Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.展开更多
The slit-type energy dissipater(STED)is widely used in hydraulic projects of high water head,large discharge,and narrow river valley,thanks to its simple structure and high efficiency.However,the water wing caused b...The slit-type energy dissipater(STED)is widely used in hydraulic projects of high water head,large discharge,and narrow river valley,thanks to its simple structure and high efficiency.However,the water wing caused by the shock waves in the contraction section of the STED may bring about harmful effects.A coefficient is introduced for the application of Ippen?s theory in the STED.The expression of the coefficient is experimentally obtained.Simplified formulas to calculate the shock wave angle and the water wing scope are theoretically derived,with relative errors within 5%.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
基金National Natural Science Foundation of China (No. 51174147) Natural Science Foundation of Hubei Province (No. 2012FFA135)
文摘Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.
基金Project supported by the National Natural Science Foundation of China(Grant No.51305204)
文摘Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.
基金supported by the National Nature Science Foundation of China(Grant Nos.51279013,51379020 and 51509015)the National Key R&D Program of China(Grant No.2016YFC0401900)
文摘The slit-type energy dissipater(STED)is widely used in hydraulic projects of high water head,large discharge,and narrow river valley,thanks to its simple structure and high efficiency.However,the water wing caused by the shock waves in the contraction section of the STED may bring about harmful effects.A coefficient is introduced for the application of Ippen?s theory in the STED.The expression of the coefficient is experimentally obtained.Simplified formulas to calculate the shock wave angle and the water wing scope are theoretically derived,with relative errors within 5%.