Timothy (Phleum pretense L.) pastures of 3 Total mixed ration (TMR) centers in Hokkaido were selected, the first cutting grasses were continuously collected from the same pastures on different harvest days over 4 year...Timothy (Phleum pretense L.) pastures of 3 Total mixed ration (TMR) centers in Hokkaido were selected, the first cutting grasses were continuously collected from the same pastures on different harvest days over 4 years (2011-2014), and changes in the water soluble carbohydrates (WSC) content were analyzed to investigate the relationship with weather conditions. The harvest days in the 4-year period were June 17-22, June 24-26, June 27-30, and July 2-5, and grasses on these dates were designated as the harvest date groups. The weather data during the cutting period in each year were utilized. The WSC content tended to change yearly and it was significantly lower in the 4 groups (67.3 - 82.1 g/kg DM) in 2011 than in the groups (101.5 - 130.3 g/kg DM) in 2013 excluding the June 24-26 group (P < 0.05, P < 0.01). The WSC content tended to increase as the harvest date progressed in 2011-2013 and it significantly increased even though the harvest date was delayed only in 2013 (P < 0.01). It was suggested that differences in the WSC content among the years were related to the weather condition and dry matter yield of the grass.展开更多
With Qingyu 1 and Qingyu 2 as test materials, variation of soluble carbohydrate content in different parts were studied under two types of artificially simulated drought stress (polyethylene glycd PEG-6000 stress and...With Qingyu 1 and Qingyu 2 as test materials, variation of soluble carbohydrate content in different parts were studied under two types of artificially simulated drought stress (polyethylene glycd PEG-6000 stress and water-controlling stress). The results showed that under the stress of PEG, soluble carbohydrate content in leaves of Qingyu 1 and Qingyu 2 increased with the prolonging time of stress; soluble carbohydrate content in stems of Qingyu 1 did not show regular changes with the prolonging time of stress, while 30% PEG stress received the best effect on Qingyu 2 after 24 h; soluble carbohydrate content in roots of Qingyu 1 and Qingyu 2 increased with the prolonging time of stress. Under different intensities of water-controUing stress, soluble carbohydrate content in leaves of Qingyu 1 first increased then decreased, while that in leaves of Qingyu 2 increased; soluble carbohydrate content in stems of Qingyu 1 and Qingyu 2 increased with the pro- longing time of water-controlling stress; soluble carbohydrate content in roots of Qingyu 1 decreased with the prolonging time of water-contmlling stress, while that in roots of Qingyu 2 differed slightly.展开更多
Leymus chinensis (Trin.) Tzveh is a rhizomatous perennial herbage of Gramineae. Reproduction is mainly by vegetative reproduction. Tillering nodes and rhizomes of L. chinensis serve as organs for both vegetative rep...Leymus chinensis (Trin.) Tzveh is a rhizomatous perennial herbage of Gramineae. Reproduction is mainly by vegetative reproduction. Tillering nodes and rhizomes of L. chinensis serve as organs for both vegetative reproduction and nutrient storage. Water-soluble carbohydrate (WSC) contents were measured in tillering nodes, nodes and Internodes of rhizomes of different age classes of L. chinensis populations at three development stages, namely the dough ripe stage, the vegetative growth stage after full ripeness, and the withering stage, in two habitats: sandy soil and saline-alkaline soil. The results showed that WSC content in tillering nodes of the three age classes of L. chinensis were all markedly decreased with increasing age in both sandy soil and saline-alkaline solh A similar trend of changes In WSC contents was observed in the nodes and internodes of rhizomes in different age classes In both habitats. The highest WSC contents were in 2-age-class nodes and internodes of rhizomes, followed by those In the 1 age class, with the lowest WSC contents found in 3-age-class nodes and internodes of rhizomes at the dough ripe and vegetative growth stages after full ripening. In turn, WSC contents decreased with Increasing age at the withering stage in both habitats. The WSC content in each age class of internode was higher than that in the node of rhizome at three development stages in both habitats.展开更多
为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站...为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站观察BRL细胞摄取FITC-WSC-DTPA纳米荧光探针的情况。结果表明:成功合成了游离氨基含量分别为92.7%、74.3%、1.59%的WSC-DTPA聚合物;WSC、WSC纳米粒以及WSC-DTPA纳米粒(氨基含量为92.7%,浓度在6.25μg/mL以上),随着药物浓度的增加,BRL细胞存活率均显著高于单纯照射组,差别有统计学意义(p<0.05),而游离氨基含量为1.59%的WSC-DTPA纳米粒无辐射保护作用;活细胞工作站检验结果显示2 h内WSC纳米粒、WSC-DTPA纳米粒能够进入BRL细胞,而非纳米化的WSC-DTPA聚合物无法进入细胞。展开更多
High MW chitosan (CS) solutions have already been proposed as vehicles for protein delivery. The aim of the present work is to investigate the potential utility of water-soluble chitosan (WSC) as vehicles to load and ...High MW chitosan (CS) solutions have already been proposed as vehicles for protein delivery. The aim of the present work is to investigate the potential utility of water-soluble chitosan (WSC) as vehicles to load and deliver proteins. WSC nanoparticles (WSC NP) with various formations were prepared based on ionic gelation of WSC with pentasodium tripolyphosphate (TPP) anions. Bovine serum albumin (BSA) was used as a model protein drug incorporated into the WSC nanoparticles. Blank and BSA-loaded WSC nanoparticles were examined and determined to have a spherical shape with diameters between 35―190 nm, and zeta potential between 35―42 mV. FTIR confirmed that the tripolyphosphoric groups of TPP linked to the ammonium groups of WSC in the nanoparticles. Some factors affecting delivery properties of BSA have been investigated. Altering the concentration of BSA from 0.05 to 1 mg/mL enhanced the loading capacity of BSA but decreased loading efficiency simultaneously. Also, with the introduction of poly ethylene glycol (PEG), BSA release accelerated. Nanoparticle preparation from WSC with various deacetylation degrees (DDs) from 72.6% to 90% and MWs ranging from 3.5 to 15.8 kDa promoted loading efficiency and decreased the release rate. These results indicate that WSC nanoparticles are promising carriers for protein delivery.展开更多
文摘Timothy (Phleum pretense L.) pastures of 3 Total mixed ration (TMR) centers in Hokkaido were selected, the first cutting grasses were continuously collected from the same pastures on different harvest days over 4 years (2011-2014), and changes in the water soluble carbohydrates (WSC) content were analyzed to investigate the relationship with weather conditions. The harvest days in the 4-year period were June 17-22, June 24-26, June 27-30, and July 2-5, and grasses on these dates were designated as the harvest date groups. The weather data during the cutting period in each year were utilized. The WSC content tended to change yearly and it was significantly lower in the 4 groups (67.3 - 82.1 g/kg DM) in 2011 than in the groups (101.5 - 130.3 g/kg DM) in 2013 excluding the June 24-26 group (P < 0.05, P < 0.01). The WSC content tended to increase as the harvest date progressed in 2011-2013 and it significantly increased even though the harvest date was delayed only in 2013 (P < 0.01). It was suggested that differences in the WSC content among the years were related to the weather condition and dry matter yield of the grass.
基金Supported by Special Promotion Plan of Innovation Team of Qinghai University(2014-NKY-209)&Special Project for Kunlun Scholars of Qinghai University&Special Project of Qinghai Provincial Key Laboratory(2015-Z-Y13)
文摘With Qingyu 1 and Qingyu 2 as test materials, variation of soluble carbohydrate content in different parts were studied under two types of artificially simulated drought stress (polyethylene glycd PEG-6000 stress and water-controlling stress). The results showed that under the stress of PEG, soluble carbohydrate content in leaves of Qingyu 1 and Qingyu 2 increased with the prolonging time of stress; soluble carbohydrate content in stems of Qingyu 1 did not show regular changes with the prolonging time of stress, while 30% PEG stress received the best effect on Qingyu 2 after 24 h; soluble carbohydrate content in roots of Qingyu 1 and Qingyu 2 increased with the prolonging time of stress. Under different intensities of water-controUing stress, soluble carbohydrate content in leaves of Qingyu 1 first increased then decreased, while that in leaves of Qingyu 2 increased; soluble carbohydrate content in stems of Qingyu 1 and Qingyu 2 increased with the pro- longing time of water-controlling stress; soluble carbohydrate content in roots of Qingyu 1 decreased with the prolonging time of water-contmlling stress, while that in roots of Qingyu 2 differed slightly.
基金Supported by the National Natural Science Foundation of China (30270260, 30470272, and 30070137).The authors thank Dr Shang-Yi Tian and Yun-Yang Zhao for assistance with the experiments. The authors are also grateful to Dr Rui Guo and Dr Li Wang for their comments on the manuscript.
文摘Leymus chinensis (Trin.) Tzveh is a rhizomatous perennial herbage of Gramineae. Reproduction is mainly by vegetative reproduction. Tillering nodes and rhizomes of L. chinensis serve as organs for both vegetative reproduction and nutrient storage. Water-soluble carbohydrate (WSC) contents were measured in tillering nodes, nodes and Internodes of rhizomes of different age classes of L. chinensis populations at three development stages, namely the dough ripe stage, the vegetative growth stage after full ripeness, and the withering stage, in two habitats: sandy soil and saline-alkaline soil. The results showed that WSC content in tillering nodes of the three age classes of L. chinensis were all markedly decreased with increasing age in both sandy soil and saline-alkaline solh A similar trend of changes In WSC contents was observed in the nodes and internodes of rhizomes in different age classes In both habitats. The highest WSC contents were in 2-age-class nodes and internodes of rhizomes, followed by those In the 1 age class, with the lowest WSC contents found in 3-age-class nodes and internodes of rhizomes at the dough ripe and vegetative growth stages after full ripening. In turn, WSC contents decreased with Increasing age at the withering stage in both habitats. The WSC content in each age class of internode was higher than that in the node of rhizome at three development stages in both habitats.
文摘为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站观察BRL细胞摄取FITC-WSC-DTPA纳米荧光探针的情况。结果表明:成功合成了游离氨基含量分别为92.7%、74.3%、1.59%的WSC-DTPA聚合物;WSC、WSC纳米粒以及WSC-DTPA纳米粒(氨基含量为92.7%,浓度在6.25μg/mL以上),随着药物浓度的增加,BRL细胞存活率均显著高于单纯照射组,差别有统计学意义(p<0.05),而游离氨基含量为1.59%的WSC-DTPA纳米粒无辐射保护作用;活细胞工作站检验结果显示2 h内WSC纳米粒、WSC-DTPA纳米粒能够进入BRL细胞,而非纳米化的WSC-DTPA聚合物无法进入细胞。
文摘High MW chitosan (CS) solutions have already been proposed as vehicles for protein delivery. The aim of the present work is to investigate the potential utility of water-soluble chitosan (WSC) as vehicles to load and deliver proteins. WSC nanoparticles (WSC NP) with various formations were prepared based on ionic gelation of WSC with pentasodium tripolyphosphate (TPP) anions. Bovine serum albumin (BSA) was used as a model protein drug incorporated into the WSC nanoparticles. Blank and BSA-loaded WSC nanoparticles were examined and determined to have a spherical shape with diameters between 35―190 nm, and zeta potential between 35―42 mV. FTIR confirmed that the tripolyphosphoric groups of TPP linked to the ammonium groups of WSC in the nanoparticles. Some factors affecting delivery properties of BSA have been investigated. Altering the concentration of BSA from 0.05 to 1 mg/mL enhanced the loading capacity of BSA but decreased loading efficiency simultaneously. Also, with the introduction of poly ethylene glycol (PEG), BSA release accelerated. Nanoparticle preparation from WSC with various deacetylation degrees (DDs) from 72.6% to 90% and MWs ranging from 3.5 to 15.8 kDa promoted loading efficiency and decreased the release rate. These results indicate that WSC nanoparticles are promising carriers for protein delivery.