期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of air-atomized water spray cooling device structure on the quenching process,microstructure,and properties of wear-resistant steel
1
作者 WEN Shibo WU Jianfeng ZHU Jianhua 《Baosteel Technical Research》 CAS 2022年第2期35-41,共7页
With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ... With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity. 展开更多
关键词 wear-resistant steel air-atomized water spray cooling cooling rate MICROSTRUCTURE HARDNESS
下载PDF
Energy conversion characteristics of reciprocating piston quasi- isothermal compression systems using water sprays 被引量:6
2
作者 jia guanwei cai maolin +1 位作者 xu weiqing shi yan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第2期285-298,共14页
Air compressors are vital and have numerous industrial applications. Approximately 8% of the annual operating electricity consumption in industrial countries is constituted by due to the use of air compressors. Becaus... Air compressors are vital and have numerous industrial applications. Approximately 8% of the annual operating electricity consumption in industrial countries is constituted by due to the use of air compressors. Because the poor heat transfer to the environment in the rapid compression process, the compression is non-isothermal, the efficiency of compressors is restricted. To improve their efficiency and achieve isothermal compression, this study proposes energy conversion reciprocating piston quasiisothermal compression using a water spray. First, a mathematical model of a reciprocating piston compressor with water sprays was established. Through experimental investigation and simulations, the mathematical model was validated. The energy conversion characteristics of the reciprocating piston compressor were then studied. To reduce compression power and enhance compression efficiency, it was first discovered that the critical parameters were the input pressure of the driving chamber, water spray mass, and compression volume ratio, which were then evaluated thoroughly. The higher the inlet pressure of the driving chamber, the faster the air compression velocity. Additionally, the compression efficiency was elevated as the water spray mass was gradually increased for a given compression volume ratio. When the compression volume ratio was increased from 2 to 3,the compression power increased from 172.7 J/stroke to 294.2 J/stroke and the compression efficiency was enhanced from 37.3%(adiabatic) to 80.6%. This research and its performance analysis can be referred to during the parameter design optimisation of reciprocating piston quasi-isothermal compression systems using water sprays. 展开更多
关键词 water spray cooling quasi-isothermal compression compression power compression efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部