Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam m...Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd...As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.展开更多
A revised phase diagram for water shows three distinct fluid phases. There is no continuity of liquid and gas, and no “critical point” on Gibbs’ density surface as hypothesized by van der Waals. A supercritical col...A revised phase diagram for water shows three distinct fluid phases. There is no continuity of liquid and gas, and no “critical point” on Gibbs’ density surface as hypothesized by van der Waals. A supercritical colloidal mesophase bounded by percolation transition loci separates supercritical liquid water and gas-phase steam. The water phase is bounded by a percolation transition (PA) of available volume, whereas steam is bounded by the loci of a percolation transition (PB) at a density whereupon a bonded molecular cluster suddenly percolates large distances. At the respective percolation densities, there is no barrier to nucleation of water to steam (PA) or steam to water (PB). Below the critical temperature, the percolation loci become the metastable spinodals in the two-phase coexistence region. A critical divide is defined by the interception of PA and PB the p-T plane. Critical parameters are obtainable from slopes and intercepts of pressure-density supercritical isotherms within the mesophase. The supercritical mesophase is a fourth equilibrium state besides ice, water and steam. A thermodynamic state function rigidity (dp/dρ)T defines a distinction between liquid and gas, and shows a remarkable symmetry due to an equivalence in number density fluctuations, arising from available volume and molecular clusters, in liquid and gas respectively. Following an earlier debate in these pages [“Fluid phases of argon: A debate on the absence of van der Waals’ critical point” Natural Science 5 (2) 194-206 (2013)], we here report further debate on a science of criticality applied to water and steam (APPENDIX 1).展开更多
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo...This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).展开更多
文摘Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
文摘As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.
文摘A revised phase diagram for water shows three distinct fluid phases. There is no continuity of liquid and gas, and no “critical point” on Gibbs’ density surface as hypothesized by van der Waals. A supercritical colloidal mesophase bounded by percolation transition loci separates supercritical liquid water and gas-phase steam. The water phase is bounded by a percolation transition (PA) of available volume, whereas steam is bounded by the loci of a percolation transition (PB) at a density whereupon a bonded molecular cluster suddenly percolates large distances. At the respective percolation densities, there is no barrier to nucleation of water to steam (PA) or steam to water (PB). Below the critical temperature, the percolation loci become the metastable spinodals in the two-phase coexistence region. A critical divide is defined by the interception of PA and PB the p-T plane. Critical parameters are obtainable from slopes and intercepts of pressure-density supercritical isotherms within the mesophase. The supercritical mesophase is a fourth equilibrium state besides ice, water and steam. A thermodynamic state function rigidity (dp/dρ)T defines a distinction between liquid and gas, and shows a remarkable symmetry due to an equivalence in number density fluctuations, arising from available volume and molecular clusters, in liquid and gas respectively. Following an earlier debate in these pages [“Fluid phases of argon: A debate on the absence of van der Waals’ critical point” Natural Science 5 (2) 194-206 (2013)], we here report further debate on a science of criticality applied to water and steam (APPENDIX 1).
文摘This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).